• Title/Summary/Keyword: Korea Atomic Energy Research Institute (KAERI) generator

Search Result 33, Processing Time 0.028 seconds

Evaluation of a Sodium-Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

  • Ahn, Sang June;Ha, Kwi-Seok;Chang, Won-Pyo;Kang, Seok Hun;Lee, Kwi Lim;Choi, Chi-Woong;Lee, Seung Won;Yoo, Jin;Jeong, Jae-Ho;Jeong, Taekyeong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.952-964
    • /
    • 2016
  • The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium-water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium-water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

Shielding Evaluation and Activation Analysis of Facilities by Neutron Generator for the Development of 20 Feet Container Inspection System

  • Jin-Woo Lee;Dae-Sung Choi;Gyo-Seong Jeong
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.443-449
    • /
    • 2023
  • KAERI(Korea Atomic Energy Research Institute) is conducting research and development of large-scale radiation generators and the latest radiation measuring instruments. In particular, research and development of security screening equipment using an electron beam accelerator and a neutron generator is in progress recently. Globally, 20 ft containers are used to transport imports and exports, and electron beam accelerators are radiation sources to measure the shape of the material inside the container during customs inspections in each country. KAERI is developing a device that can use an electron beam accelerator and a neutron generator sequentially to grasp the shape of various materials as well as the location of the internal target material. In this study, when using the neutron generator, the radiation dose and the degree of activation by neutron for the facility and surrounding environment, facility equipment were simulated using MCNP and FISPACT code. As a result, the shielding structures inside and outside the radiation control area were satisfactory to the reference level established conservatively based on the Korean Nuclear Act.

Conceptual design of a copper-bonded steam generator for SFR and the development of its thermal-hydraulic analyzing code

  • Im, Sunghyuk;Jung, Yohan;Hong, Jonggan;Choi, Sun Rock
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2262-2275
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) studied the sodium-water reaction (SWR) minimized steam generator for the safety of the sodium-cooled fast reactor (SFR), and selected the copper bonded steam generator (CBSG) as the optimal concept. This paper introduces the conceptual design of the CBSG and the development of the CBSG sizing analyzer (CBSGSA). The CBSG consists of multiple heat transfer modules with a crossflow heat transfer configuration where sodium flows horizontally and water flows vertically. The heat transfer modules are stacked along a vertical direction to achieve the targeted large heat transfer capacity. The CBSGSA code was developed for the thermal-hydraulic analysis of the CBSG in a multi-pass crossflow heat transfer configuration. Finally, we conducted a preliminary sizing and rating analysis of the CBSG for the trans-uranium (TRU) core system using the CBSGSA code proposed by KAERI.

Comparative study of 82Sr separation/purification methods used at Brookhaven National Laboratory and ARRONAX

  • Ha, Yeong Su;Yoon, Sang-Pil;Kim, Han-Sung;Kim, Kye-Ryung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.71-78
    • /
    • 2019
  • Nuclear imaging is one of the most powerful measures for non-invasive diagnosis of myocardial vascular disease. Radionuclide such as 13N, 15O, 201Tl and 82Rb is used for the measurement of cardiac blood flow. 13N, 15O and 201Tl are produced in cyclotrons while 82Rb is obtained from generator. Rubidium (Rb), an alkali ion, behaves biologically like potassium, and accumulates in myocardial tissue. Rb has rapid blood clearance profile which allows the use of 82Rb with a short physical half-life of 75 s for non-invasive evaluation of regional myocardial perfusion. There are several advantages of 82Rb over other radioisotopes. An ultra-short half-life significantly reduces the exposure of patients to radiation and allows to repeat injections for studying the effects of medical intervention. As a positron emitter, 82Rb allows positron emission tomography (PET) imaging which have shown superior diagnostic performances. 82Rb can be produced from generator by decay of its parent 82Sr. However, the preparation of 82Sr is difficult, because appropriate purity is required to meet the specification of the product. Recently reported procedure from ARRONAX research institute showed that a Chelex-100 resin is sufficient for this purpose and additional column is not necessary. Whereas Brookhaven National Laboratory (BNL) procedure contains three ion exchange resin separation, including Chelex-100 resin. Currently, since 82Sr production site is non-existent in Korea, Korea Atomic Energy Research Institute (KAERI) has plan to produce 82Sr within specifications. We compared 82Sr purification procedures reported from ARRONAX and BNL to investigate the most suitable procedure for our conditions.

Performance of Beam Extractions for the KSTAR Neutral Beam Injector

  • Chang, D.H.;Jeong, S.H.;Kim, T.S.;Lee, K.W.;In, S.R.;Jin, J.T.;Chang, D.S.;Oh, B.H.;Bae, Y.S.;Kim, J.S.;Cho, W.;Park, H.T.;Park, Y.M.;Yang, H.L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.240-240
    • /
    • 2011
  • The first neutral beam injector (NBI-1) has been developed for the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. A first long pulse ion source (LPIS-1) has been installed on the NBI-1 for an auxiliary heating and current drive of KSTAR core plasmas. Performance of ion and neutral beam extractions in the LPIS-1 was investigated initially on the KSTAR NBI-1 system, prior to the neutral beam injection into the main plasmas. The ion source consists of a JAEA magnetic bucket plasma generator with multi-pole cusp fields and a set of KAERI prototype-III tetrode accelerators with circular apertures. The inner volume of plasma generator and accelerator column in the LPIS-1 is approximately 123 liters. Final design requirements for the ion source were a 120 kV/ 65 A deuterium beam and a 300 s pulse length. The extraction of ion beams was initiated by the formation of arc plasmas in the LPIS-1, called as an arc-beam extraction method. A stable ion beam extraction of LPIS-1 has been achieved up to an 100 kV/42 A for a 4 s pulse length and an 80 kV/25 A for a 14 s pulse length. Optimum beam perveance of 1.21 microperv has been found at an accelerating voltage of 80 kV. Neutralization efficiency has been measured by using a water flow calorimetry (WFC) method of calorimeter and an operation of bending magnet. The full-energy species of ion beams have been detected by using the diagnostic method of optical multichannel analyzer (OMA). An arc efficiency of the LPIS was 0.6~1.1 A/kW depending on the operating conditions of arc discharge.

  • PDF

Development of an exclusive column method for 82Sr/82Rb generator using a 100 MeV proton linear accelerator of KOMAC

  • Kye-Ryung Kim;Yeong Su Ha;Sang-Pil Yoon;Yeon-ji Lee;Yong-Sub Cho;Hyeongi Kim;Sang-Jin Han;Jung Young Kim;Kyo Chul Lee;Jin Su Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • 82Sr for 82Rb generator was produced through the irradiation of the proton beam on the nat.RbCI target at the target irradiation facility installed at the end of the Rl-dedicated beamline of the 100 MeV proton linear accelerator of KOMAC (Korea Multi-purpose Accelerator Complex). The average current of the proton beam was 1.2 µA for irradiation time of 150 min. For the separation and purification of the 82Sr from nat.RbCI irradiated, Chelex-100 resin was used. The activities of 82Sr in the irradiated nat.RbCI target solution and after purification were 45.29 µCi and 43.4 µCi, respectively. The separation and purification yield was 95.8%. As an adsorbent to be filled in the generator for 82Sr adsorption hydrous tin oxide was selected. The adsorption yield of 82Sr into the generator adsorbent was > 99 %, and the total amount of 82Sr adsorbed to the generator was 21.6 µCi as of the day of the 82Rb elution experiment. When the elution amount was 22 mL, the maximum82Rb elution yield was 93.3%, and the elution yield increased as the flow rate increased. After the eluted 82Rb was filled in the correction phantom of the small PET for animals, a PET image was taken. The image scan time was set to 5 min, and the phantom PET image was successfully obtained. As results of impurity analysis on eluted 82Rb using ICP-MS, nat.Rb stable isotopes that compete in vivo of 82Rb were identified as undetected levels and were determined to be No-Carrier-Added (NCA).

Development of Large-Area RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Chang, Doo-Hee;Jeong, Seung Ho;Kim, Tae-Seong;Park, Min;Lee, Kwang Won;In, Sang Ryul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.179.2-179.2
    • /
    • 2013
  • A large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER device. Negative hydrogen ion sources are major components of neutral beam injection (NBI) systems in future large-scale fusion experiments such as ITER and DEMO. The RF sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck-Institute for Plasma Physics), Garching, for the ASDEX-U and W7-AS neutral beam heating systems. Ion sources of the first NBI system (NBI-1) for the KSTAR tokamak have been developed successfully with a bucket plasma generator based on the filament arc discharge, which have contributed to achieve a good plasma performance such as 15 sec H-mode operation with an injection of 3.5 MW NB power. There is a development plan of RF ion source at the KAERI to extract the positive ions, which can be used for the second NBI system (NBI-2) of the KSTAR and to extract the negative ions for future fusion devices such as Fusion Neutron Source and Korea-DEMO. The development progresses of RF ion source at the KAERI are described in this presentation.

  • PDF