• Title/Summary/Keyword: Korea & Codex

Search Result 264, Processing Time 0.02 seconds

Development of Simultaneous Analytical Method for Streptomycin and Dihydrostreptomycin Detection in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Streptomycin 및 Dihydrostreptomycin 동시시험법 개발)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Park, Shin-Min;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • A method was developed for the simultaneous detection of an antibiotic fungicide, streptomycin, and its metabolite (dihydrostreptomycin) in agricultural products using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted using methanol adjusted to pH 3 using formic acid, and purified with a HLB (Hydrophilic lipophilic balance) cartridge. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.001 to 0.1 mg/kg, and linearity of five agricultural products (hulled rice, potato, soybean, mandarin, green pepper), with coefficients of determination $(R^2){\geq}0.9906$, for streptomycin and dihydrostreptomycin. The mean recoveries at three fortification levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n = 5) were from 72.0~116.5% and from 72.1~116.0%, and relative standard deviations were less than 12.3% and 12.5%, respectively. The limits of quantification (LOQ) were 0.01 mg/kg, which are satisfactory for quantification levels corresponding with the Positive List System. All optimized results satisfied the criteria ranges requested in the Codex guidelines and the Food Safety Evaluation Department guidelines. The present study could serve as a reference for the establishment of maximum residue limits and be used as basic data for detection of streptomycin and dihydrostreptomycin in food.

Current status and prospects of approval of the new technology-based food additives (신기술이용 식품첨가물 국내·외 심사 현황 및 전망)

  • Rhee, Jin-Kyu
    • Food Science and Industry
    • /
    • v.52 no.2
    • /
    • pp.188-201
    • /
    • 2019
  • In the past, food additives were classified and managed as chemical synthetic and natural additives according to the manufacturing process, but it was difficult to confirm the purpose or function of food additives.CODEX, an internationalstandard, classifies food additives according to their practical use, based on scientific evidence on the technical effects of food additives, instead of classifying them as synthetic or natural. Therefore, very recently, the food additive standards in Korea have been completely revised in accordance with these global trends. Currently, the classification system of food additives is divided into 31 uses to specify their functions and purposes instead of manufacturing methods. Newer revision of the legislative framework for defining and expanding the scope of the Act as an enlarged area is required. Competition for preempting new food products based on bio-based technology is very fierce in order to enhance the safety of domestic people and maximize the economic profit of their own countries. In this age of infinite competition, it is very urgent to revise or supplement the current regulations in order to revitalize the domestic food industry and enhance national competitiveness through the development of food additives using new biotechnology. In this report, current laws on domestic food ingredients, food additives and manufacturing methods, and a comparison of domestic and foreign advanced countries' regulations and countermeasures strategies were reviewed to improve national competitiveness of domestic advanced biotechnology-based food additives industry.

Development and Validation of an Analytical Method for Fenpropimorph in Agricultural Products Using QuEChERS and LC-MS/MS (QuEChERS법과 LC-MS/MS를 이용한 농산물 중 Fenpropimorph 시험법 개발 및 검증)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.115-123
    • /
    • 2019
  • An analytical method was developed for the determination of fenpropimorph, a morpholine fungicide, in hulled rice, potato, soybean, mandarin and green pepper using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) sample preparation and LC-MS/MS (liquid chromatography-tandem mass spectrometry). The QuEChERS extraction was performed with acetonitrile followed by addition of anhydrous magnesium sulfate and sodium chloride. After centrifugation, d-SPE (dispersive solid phase extraction) cleanup was conducted using anhydrous magnesium sulfate, primary secondary amine sorbents and graphitized carbon black. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.0025 to 0.25 mg/kg, and their correlation coefficient ($R^2$) of five agricultural products were higher than 0.9899. The limits of detection (LOD) and quantification (LOQ) were 0.001 and 0.0025 mg/kg, respectively, and the limits of quantification for the analytical method were 0.01 mg/kg. Average recoveries spiked at three levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n=5) and were in the range of 90.9~110.5% with associated relative standard deviation values less than 5.7%. As a result of the inter-laboratory validation, the average recoveries between the two laboratories were 88.6~101.4% and the coefficient of variation was also below 15%. All optimized results were satisfied the criteria ranges requested in the Codex guidelines and Food Safety Evaluation Department guidelines. This study could serve as a reference for safety management relative to fenpropimorph residues in imported and domestic agricultural products.

Contents of Heavy Metals in Marine Invertebrates from the Korean Coast (한국 연안산 해산 무척추동물의 중금속 함량)

  • Mok, Jong-Soo;Lee, Ka-Jeong;Shim, Kil-Bo;Lee, Tae-Seek;Song, Ki-Cheol;Kim, Ji-Hoe
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.6
    • /
    • pp.894-901
    • /
    • 2010
  • To measure the heavy metal contents of marine invertebrates, we collected 239 individuals representing 52 species from the eastern (Pohang), western (Gunsan), and southern (Tongyeong) coasts of Korea: 34 species of molluscan shellfish (Gastropoda and Bivalvia), 6 species of Cephalopoda, 8 species of Crustacea, and 4 other species. The mean levels of the heavy metals in the samples taken from the edible portion of each Gastropoda were high in the order of Zn ($21.471\;{\mu}g/g$), Cu ($4.115\;{\mu}g/g$), Mn ($0.868\;{\mu}g/g$), Ni ($0.254\;{\mu}g/g$), Pb ($0.238\;{\mu}g/g$), Cd ($0.154\;{\mu}g/g$), and Cr ($0.110\;{\mu}g/g$). The heavy metals in the Bivalvia were high in the order of Zn ($35.655\;{\mu}g/g$), Mn ($5.500\;{\mu}g/g$), Cu ($3.129\;{\mu}g/g$), Cd ($0.423\;{\mu}g/g$), Ni ($0.402\;{\mu}g/g$), Cr ($0.233\;{\mu}g/g$), and Pb ($0.232\;{\mu}g/g$). The heavy metals in the Cephalopoda were high in the order of Zn ($18.380\;{\mu}g/g$), Cu ($3.594\;{\mu}g/g$), Mn ($0.630\;{\mu}g/g$), Cr ($0.150\;{\mu}g/g$), Pb ($0.068\;{\mu}g/g$), Cd ($0.034\;{\mu}g/g$), and Ni ($0.030\;{\mu}g/g$). The heavy metals in the Crustacea were high in the order of Zn ($25.333\;{\mu}g$/g), Cu ($9.042\;{\mu}g/g$), Mn ($0.659\;{\mu}g/g$), Cr ($0.592\;{\mu}g/g$), Cd ($0.207\;{\mu}g/g$), Pb ($0.126\;{\mu}g/g$), and Ni ($0.094\;{\mu}g/g$). Therefore, the mean levels of the harmful heavy metals (Cd and Pb) in marine invertebrates were high in the order of Bivalvia>Crustacea=Gastropoda>Cephalopoda. The average daily intakes of the heavy metals from the fisheries products were as follows: Cd ($6.88\;{\mu}g$), Cr ($19.13\;{\mu}g$), Cu ($137.02\;{\mu}g$), Mn ($156.13\;{\mu}g$), Ni ($11.39\;{\mu}g$), Pb ($7.01\;{\mu}g$) and Zn ($1,025.94\;{\mu}g$). The average weekly intakes of Cd, Cu, Pb and Zn from the fisheries products were 11.47%, 0.46%, 3.27% and 1.71% respectively, as compared with PTWI (Provisional Tolerable Weekly Intakes) established by FAO/WHO Expert Committee for Food Safety Evaluation.