• Title/Summary/Keyword: Koopman Operator

Search Result 1, Processing Time 0.014 seconds

Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator (모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어)

  • Kim, Junsik;Woo, Heejin;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.