• Title/Summary/Keyword: Kompsat-3A

Search Result 375, Processing Time 0.023 seconds

Applicability for Detecting Trails by Using KOMPSAT Imagery (등산로 탐지를 위한 KOMPSAT 영상의 활용가능성)

  • Bae, Jinsu;Yim, Jongseo;Shin, Young Ho
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.6
    • /
    • pp.607-619
    • /
    • 2015
  • It is important to detect trails accurately for finding a proper management. We examined the applicability of KOMPSAT imagery to detect trails and found that it could be an efficient alternative to track trails correctly. We selected K2 and K3 imagery with different spatial resolution. Then, we processed each imagery to get NDVI, SAVI, and SC data. And then, we identified trails by object-based analysis and network analysis. Finally, we evaluated the potential trails with F-measurement and Jaccard coefficient which are based on correctness and completeness. The results show that the applicability is quite different in each case. Among them, especially the SC data with K3 shows the most highest value; correctness of detecting legal trails is 0.44 and completeness of that is 0.54. F-measurement and Jaccard coefficient are 0.49 and 0.32. In general, although there is a limit in detecting trails by using only KOMPSAT imagery, the usefulness of KOMPSAT imagery can be a higher considering its cost efficiency and availability of acquiring periodic data.

  • PDF

Definition and Monitoring of Image data Quality for KOMPSAT-3 from users (사용자 측면에서의 아리랑위성 3호 영상자료의 품질 정의 및 관리)

  • Lee, DongHan;Kim, Mina;Seo, DooChun;Jeong, JaeHeon;Jeon, KyeongMi
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2014
  • Generally there is a technical gap for the image data quality between from the satellite requirement values and from the users. After Cal/Val for KOMPSAT-3 had been done by Dec. 31, 2012, all requirements for KOMPSAT-3 image data quality have been validated, and then the normal operation of it started from Jan. 2013. In the normal period, the image data quality for the users has been defined and managed, and according to the result of it, the additional Cal/Val items have been doing. Cal/Val team and Processing team in KARI made the quality report (QR) for KOMPSAT-3 image data quality for the users, and have determined the quality level of KOMPSAT-3 product generated by Processing system (PMS; Product Management System) and managed the quality report for it. According to the result of the quality report, Cal/Val team defined six additional Cal/Val items, and has done five items of them and has been implementing the result of them into the Processing system.

Bundle Adjustment of KOMPSAT-3A Strip Based on Rational Function Model (Rational Function Model 기반 KOMPSAT-3A 스트립 번들조정)

  • Yoon, Wansang;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.565-578
    • /
    • 2018
  • In this paper, we investigate the feasibility of modelling image strips, instead of individual scenes, that have been acquired from the same orbital pass through the process of bundle adjustments. Under this approach, First, a rational function model (RFM) of the strip image is generated from the RFMs of individual images, such that the entire strip of images can be treated as a single image. Correction parameters are calculated through bundle adjustments between strip images. For the experiment, we used two stereo strips. Each strip image consists of three KOMPSAT-3A scenes. Experimental results show that it was possible to improve the initial model by using the control points located in a specific region of the strip. We showed that absolute orientation with moderate accuracy of 2 m errors were achieved from 12 ground control points for the three-image strips. The test results indicate that bundle adjustment of strip images could be more efficient than bundle adjustments of the individual scenes.

Antarctic DEMs Generation Using KOMPSAT-3A Stereo Images and Comparison by DEM Matching (KOMPSAT-3A 입체영상을 이용한 남극 DEM 제작과 DEM 매칭에 의한 두 시기의 DEM 비교)

  • Lee, Hyoseong;Hwang, Hobin;Seo, Doochun;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2017
  • Antarctica, where ice sheet has been declined rapidly, should be monitored periodically. However, there are difficult to access for local survey or aircraft observation due to the vast and extreme environments of the polar regions. In order to overcome this problem, there have been a lot of studies by acquiring radar or laser data by satellite. It is also difficult to accurately measure the changes of the surface where is composed of snow or ice layer, and it is also difficult to product a high-resolution DEM. This study therefore aims to product DEMs of two periods using high-resolution KOMPSAT-3A stereo images, and DEM matching is implemented by the LZD(Least-squares Z-Differences) method to detect DEM changes in both periods. As a result, the proposed method could be suggested as comparing height differences of the two DEMs within 1m precision.

A Method of DTM Generation from KOMPSAT-3A Stereo Images using Low-resolution Terrain Data (저해상도 지형 자료를 활용한 KOMPSAT-3A 스테레오 영상 기반의 DTM 생성 방법)

  • Ahn, Heeran;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.715-726
    • /
    • 2019
  • With the increasing prevalence of high-resolution satellite images, the need for technology to generate accurate 3D information from the satellite images is emphasized. In order to create a digital terrain model (DTM) that is widely used in applications such as change detection and object extraction, it is necessary to extract trees, buildings, etc. that exist in the digital surface model (DSM) and estimate the height of the ground. This paper presents a method for automatically generating DTM from DSM extracted from KOMPSAT-3A stereo images. The technique was developed to detect the non-ground area and estimate the height value of the ground by using the previously constructed low-resolution topographic data. The average vertical accuracy of DTMs generated in the four experimental sites with various topographical characteristics, such as mountainous terrain, densely built area, flat topography, and complex terrain was about 5.8 meters. The proposed technique would be useful to produce high-quality DTMs that represent precise features of the bare-earth's surface.

Fine Co-registration Performance of KOMPSAT-3·3A Imagery According to Convergence Angles (수렴각에 따른 KOMPSAT-3·3A호 영상 간 정밀 상호좌표등록 결과 분석)

  • Han, Youkyung;Kim, Taeheon;Kim, Yeji;Lee, Jeongho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.491-498
    • /
    • 2019
  • This study analyzed how the accuracy of co-registration varies depending on the convergence angles between two KOMPSAT-3·3A images. Most very-high-resolution satellite images provide initial coordinate information through metadata. Since the search area for performing image co-registration can be reduced by using the initial coordinate information, in this study, the mutual information method showing high matching reliability in the small search area is used. Initial coarse co-registration was performed by using multi-spectral images with relatively low resolution, and precise fine co-registration was conducted centering on the region of interest of the panchromatic image for more accurate co-registration performance. The experiment was conducted by 120 combination of 16 KOMPSAT-3·3A 1G images taken in Daejeon area. Experimental results show that a correlation coefficient between the convergence angles and fine co-registration errors was 0.59. In particular, we have shown the larger the convergence angle, the lower the accuracy of co-registration performance.

APPLICABLE TRACKING DATA ARCS FOR NORAD TLE ORBIT DETERMINATION OF THE KOMPSAT-1 SATELLITE USING GPS NAVIGATION SOLUTIONS

  • Lee, Byoung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.243-248
    • /
    • 2005
  • NORAD Two Line Element (TLE) is very useful to simplify the ground station antenna pointing and mission operations. When a satellite operations facility has the capability to determine NORAD type TLE which is independent of NORAD, it is important to analyze the applicable tracking data arcs for obtaining the best possible orbit. The applicable tracking data arcs for NORAD independent TLE orbit determination of the KOMPSAT-1 using GPS navigation solutions was analyzed for the best possible orbit determination and propagation results. Data spans of the GPS navigation solutions from 1 day to 5 days were used for TLE orbit determination and the results were used as Initial orbit for SGP4 orbit propagation. The operational orbit determination results using KOMPSAT-1 Mission Analysis and Planning System(MAPS) were used as references for the comparisons. The best-matched orbit determination was obtained when 3 days of GPS navigation solutions were used. The resulting 4 days of orbit propagation results were within 2 km of the KOMPSAI-1 MAPS results.

Radiometric Cross Validation of KOMPSAT-3 AEISS (다목적실용위성 3호 AEISS센서의 방사 특성 교차 검증)

  • Shin, Dong-yoon;Choi, Chul-uong;Lee, Sun-gu;Ahn, Ho-yong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.529-538
    • /
    • 2016
  • This study, multispectral and hyperspectral sensors were utilized to use radiometric cross validation for the purpose of radiometric quality evaluation of a 'KOMPSAT-3'. Images of EO-1 Hyperion and Landsat-8 OLI sensors taken in PICS site were used. 2 sections that have 2 different types of ground coverage respectively were selected as the site of cross validation based on aerial hyperspectral sensor and TOA Reflectance. As a result of comparison between the TOA reflectance figures of KOMPSAT-3, EO-1 Hyperion and CASI-1500, the difference was roughly 4%. It is considered that it satisfies the radiological quality standard when the difference of figure of reflectance in a comparison to the other satellites is found within 5%. The difference in Blue, Green, Red band was approximately 3% as a comparison result of TOA reflectance. However the figure was relatively low in NIR band in a comparison to Landsat-8. It is thought that the relatively low reflectance is because there is a difference of band passes in NIR band of 2 sensors and in a case of KOMPSAT-3 sensor, a section of 940nm, which shows the strong absorption through water vapor, is included in band pass resulting in comparatively low reflectance. To overcome these conditions, more detailed analysis with the application of rescale method as Spectral Bandwidth Adjustment Factor (SBAF) is required.

Analysis of the Targeting Accuracy of KOMPSAT-1 EOC (아리랑위성1호EOC영상촬영의 지향정확도분석)

  • Jeon, Gap-Ho;Kim, Yun-Su;Seo, Du-Cheon
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.220-226
    • /
    • 2006
  • At present the KOMPSAT-1 is operating for seven years, though mission life time was only three years. We expect the KOMPSAT-1's mission for several years ahead, considering the KOMPSAT-1's current conditions. However, a question that the plan and the result was not equal have being arises. Recently, we attempted to take a picture of the Mount Everest. But we don't take a picture of the Mount Everest in the center of image. This paper make clear the difference between target center from operating commender and image center from received data, for the continual and stable KOMPSAT operation.

  • PDF

Ground Receiving System for KOMPSAT-2

  • Kim, Moon-Gyu;Kim, Tae-Jung;Choi, Hae-Jin;Park, Sung-Og;Lee, Dong-Han;Im, Yong-Jo;Shin, Ji-Hyun;Choi, Myung-Jin;Park, Seung-Ran;Lee, Jong-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.191-200
    • /
    • 2003
  • Remote sensing division of satellite technology research center (SaTReC) , Korea advanced institute of science and technology (KAIST) has developed a ground receiving and processing system for high resolution satellite images. The developed system will be adapted and operated to receive, process and distributes images acquired from of the second Korean Multi-purpose Satellite (KOMPSAT-2), which will be launched in 2004. This project had initiated to develop and Koreanize the state-of-the-art technologies for the ground receiving system for high resolution remote sensing images, which range from direct ingestion of image data to the distribution of products through precise image correction. During four years development from Dec. 1998 until Aug. 2002, the system had been verified in various ways including real operation of custom-made systems such as a prototype system for SPOT and a commercialized system for KOMPSAT-1. Currently the system is under customization for installation at KOMPSAT-2 ground station. In this paper, we present accomplished work and future work.