• Title/Summary/Keyword: Kokumi

Search Result 5, Processing Time 0.018 seconds

Umami Taste-Yielding Food Materials on Calcium-Sensing Receptor, a Kokumi Taste Receptor (감칠맛 식품 소재가 Kokumi 맛 감지 칼슘수용체에 미치는 효과)

  • Yiseul, Kim;Eun-Young, Kim;Mee-Ra, Rhyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.6
    • /
    • pp.531-536
    • /
    • 2022
  • Umami taste-yielding foods, such as, Joseonganjang, dried anchovies, dried shiitake, dried Konbu (kelp), and Yukjeot, are widely used in the Korean cuisine as soup base. While Umami taste enhancement related to Kokumi taste substances has been proposed in human sensory studies, the potential action of Kokumi taste substances has not been explored on calcium-sensing receptors (CaSR), here referred to as Kokumi taste receptors. In this study, we investigated the effect of Umami taste-yielding foods on Kokumi taste receptors using cells expressing human CaSR. We monitored the temporal changes in intracellular Ca2+ in HEK293T cells expressing CaSR in response to aqueous extract of Joseonganjang, dried anchovies, dried shiitake, dried Konbu, and Yukjeot. Kokumi substances tested-glutathione and γ-Glu-Val-Gly- evoked intracellular Ca2+ influx in a concentration-dependent manner. A similar increment of intracellular Ca2+ influx was induced by Joseonganjang, Yukjeot, and dried anchovies, but not by dried shiitake and dried Konbu. Only Joseonganjang- and Yukjeot-evoked intracellular Ca2+ influx was significantly reduced by NPS 2143, a CaSR-specific antagonist. These data indicated that some Umami substances/Umami-yielding materials could activate CaSR, but this property was not observed for all the Umami tasting substances.

Enzymatic Activity and Amino Acids Production of Predominant Fungi from Traditional Meju during Soybean Fermentation

  • Dong Hyun Kim;Byung Hee Chun;Jae-Jung Lee;Oh Cheol Kim;Jiye Hyun;Dong Min Han;Che Ok Jeon;Sang Hun Lee;Sang-Han Lee;Yong-Ho Choi;Seung-Beom Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.654-662
    • /
    • 2024
  • To investigate the effect of the predominant fungal species from Korean traditional meju and doenjang on soybean fermentation, the enzymatic activity and amino acid production of twenty-two fungal strains were assessed through solid- and liquid-state soybean fermentation. Enzymatic activity analyses of solid-state fermented soybeans revealed different enzyme activities involving protease, leucine aminopeptidase (LAP), carboxypeptidase (CaP), glutaminase, γ-glutamyl transferase (GGT), and amylase, depending on the fungal species. These enzymatic activities significantly affected the amino acid profile throughout liquid-state fermentation. Strains belonging to Mucoromycota, including Lichtheimia, Mucor, Rhizomucor, and Rhizopus, produced smaller amounts of total amino acids and umami-producing amino acids, such as glutamic acid and aspartic acid, than strains belonging to Aspergillus subgenus circumdati. The genera Penicillium and Scopulariopsis produced large amounts of total amino acids and glutamic acid, suggesting that these genera play an essential role in producing umami and kokumi tastes in fermented soybean products. Strains belonging to Aspergillus subgenus circumdati, including A. oryzae, showed the highest amino acid content, including glutamic acid, suggesting the potential benefits of A. oryzae as a starter for soybean fermentation. This study showed the potential of traditional meju strains as starters for soybean fermentation. However, further analysis of processes such as the production of G-peptide for kokumi taste and volatile compounds for flavor and safety is needed.

Effect of Arachidonic Acid-enriched Oil Diet Supplementation on the Taste of Broiler Meat

  • Takahashi, H.;Rikimaru, K.;Kiyohara, R.;Yamaguchi, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.845-851
    • /
    • 2012
  • To elucidate the relationship between the arachidonic acid (AA) content and the taste of broiler meat, the effects of AA-enriched oil (AAO) supplements on the fatty acid content and sensory perceptions of thigh meat were evaluated. Four types of oil, including corn oil (CO), a 1:1 mixture of AAO and palm oil (PO) (1/2 AAO), a 1:3 mixture of AAO and PO (1/4 AAO), and a 1:7 mixture of AAO and PO (1/8 AAO) were prepared. Each type of oil was mixed with silicate at a ratio of 7:3, and added to the diet at a final proportion of 5% of fresh matter. Broiler chickens were fed these diets for 1 wk before slaughter. In thigh meat, the AA content of the 1/2 and 1/4 AAO groups was significantly higher than that of the CO group. The AA content in thigh meat (y, mg/g) increased linearly with increasing dietary AAO content (x, g/100 g of diet), according to the equation y = 0.5674+0.4596x ($r^2$ = 0.8454). The content of other fatty acids was not significantly different among the 4 diet groups. Sensory evaluation showed that the flavor intensity, umami (L-glutamate taste), kokumi (continuity, mouthfulness, and thickness), and aftertaste of the 1/2 and 1/4 AAO groups were significantly higher than that of the CO group. There were significant positive correlations between AA content in thigh meat and the flavor intensity, total taste intensity, umami, and aftertaste. These data suggest that the taste of broiler meat can be improved by the amount of dietary AA supplementation.

Distribution and Characteristics of Penicillium spp. in Meju, aKorean Traditional Fermented Soybean Brick (전통 메주에서의 Penicillium spp.의 분포 및 특징)

  • Kang Uk Kim;Jungho Lee;Shin Young Roh;Yong-Ho Choi;Byung-Serk Hurh;Inhyung Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.441-448
    • /
    • 2023
  • Penicillium spp. are frequently found in meju, a Korean traditional fermented soybean brick. We isolated and identified 96 Penicillium spp. from 22 traditional meju, and their β-tubulin genes were sequenced for the genetic and taxonomic study. Penicillium Section Viridicata was the most commonly isolated group. Notably, we also isolated and identified Penicillium roqueforti, a crucial industrial strain employed in the fermentation of blue cheese. Additionally, certain strains exhibited relatively high protease and γ-glutamyl transpeptidase activities, suggesting that they might contribute to the development of kokumi flavor during meju fermentation. Interestingly, all eight Penicillium spp., including P. roqueforti, were found to possess both types of MAT1 genes. This intriguing finding suggests the feasibility of strain improvement through mating, thereby offering opportunities for industrial applications. Therefore, these studies pave the way for a deeper exploration of Penicillium's role in meju fermentation, potentially leading to the development of starters for producing plant-based cheese-flavored condiments.