• Title/Summary/Keyword: Kodamaea

Search Result 4, Processing Time 0.019 seconds

Isolation and characterization of unrecorded yeasts species in the family Metschnikowiaceae and Bulleribasidiaceae in Korea

  • Park, Yuna;Maeng, Soohyun;Srinivasan, Sathiyaraj
    • Journal of Species Research
    • /
    • v.9 no.3
    • /
    • pp.198-203
    • /
    • 2020
  • The goal of this study was to isolate and identify wild yeasts from soil samples. The 15 wild yeast strains were isolated from the soil samples collected in Pocheon city, Gyeonggi Province, Korea. Among them, four yeast stains were unrecorded, and 11 yeast stains were previously recorded in Korea. To identify wild yeasts, microbiological characteristics were observed by API 20C AUX kit. Pairwise sequence comparisons of the D1/D2 domain of the 26S rRNA were performed using Basic Local Alignment Search Tool(BLAST). Cell morphology of yeast strains was examined by phase contrast microscope. All strains were oval-shaped and polar budding and positive for assimilation of glucose, 2-keto-ᴅ-gluconate, N-acetyl-ᴅ-glucosamine, ᴅ-maltose and ᴅ-saccharose (sucrose). There is no official report that describes these four yeast species: one strain of the genus Kodamaea in the family Metschnikowiaceae and three strains of the Hannaella in the family Bulleribasidiaceae. Kodamaea ohmeri YI7, Hannaella kunmingensis YP355, Hannaella luteola YP230 and Hannaella oryzae YP366 were recorded in Korea, for the first time.

Identification of LAB and Fungi in Laru, a Fermentation Starter, by PCR-DGGE, SDS-PAGE, and MALDI-TOF MS

  • Ahmadsah, Lenny S.F.;Kim, Eiseul;Jung, Youn-Sik;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • Samples of Laru (a fermentation starter) obtained from the upper part of Borneo Island were analyzed for their lactic acid bacteria (LAB) and fungal diversity using both a culture-independent method (PCR-DGGE) and culture-dependent methods (SDS-PAGE and MALDI-TOF MS). Pediococcus pentosaceus, Lactobacillus brevis, Saccharomycopsis fibuligera, Hyphopichia burtonii, and Kodamaea ohmeri were detected by all three methods. In addition, Weissella cibaria, Weissella paramesenteroides, Leuconostoc citreum, Leuconostoc mesenteroides, Lactococcus lactis, Rhizopus oryzae/Amylomyces rouxii, Mucor indicus, and Candida intermedia were detected by PCR-DGGE. In contrast, Lactobacillus fermentum, Lactobacillus plantarum, Pichia anomala, Candida parapsilosis, and Candida orthopsilosis were detected only by the culture-dependent methods. Our results indicate that the culture-independent method can be used to determine whether multiple laru samples originated from the same manufacturing region; however, using the culture-independent and the two culture-dependent approaches in combination provides a more comprehensive overview of the laru microbiota.

Screening Wild Yeast Strains for Alcohol Fermentation from Various Fruits

  • Lee, Yeon-Ju;Choi, Yu-Ri;Lee, So-Young;Park, Jong-Tae;Shim, Jae-Hoon;Park, Kwan-Hwa;Kim, Jung-Wan
    • Mycobiology
    • /
    • v.39 no.1
    • /
    • pp.33-39
    • /
    • 2011
  • Wild yeasts on the surface of various fruits including grapes were surveyed to obtain yeast strains suitable for fermenting a novel wine with higher alcohol content and supplemented with rice starch. We considered selected characteristics, such as tolerance to alcohol and osmotic pressure, capability of utilizing maltose, and starch hydrolysis. Among 637 putative yeast isolates, 115 strains exhibiting better growth in yeast-peptone-dextrose broth containing 30% dextrose, 7% alcohol, or 2% maltose were selected, as well as five ${\alpha}$-amylase producers. Nucleotide sequence analysis of the 26S rDNA gene classified the strains into 13 species belonging to five genera; Pichia anomala was the most prevalent (41.7%), followed by Wickerhamomyces anomalus (19.2%), P. guilliermondii (15%), Candida spp. (5.8%), Kodamaea ohmeri (2.5%), and Metschnikowia spp. (2.5%). All of the ${\alpha}$-amylase producers were Aureobasidium pullulans. Only one isolate (NK28) was identified as Saccharomyces cerevisiae. NK28 had all of the desired properties for the purpose of this study, except ${\alpha}$-amylase production, and fermented alcohol better than commercial wine yeasts.

Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India

  • Tiwari, Snigdha;Avchar, Rameshwar;Arora, Riya;Lanjekar, Vikram;Dhakephalkar, Prashant K.;Dagar, Sumit S.;Baghela, Abhishek
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.501-511
    • /
    • 2020
  • Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 ℃, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.