• Title/Summary/Keyword: Kobe 지진

Search Result 67, Processing Time 0.024 seconds

Seismic Performance of Rib Plate H Beam to Column Connections (리브로 보강된 기둥-보 접합부의 내진성능 평가)

  • Kim, Sung-Yong;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.9-16
    • /
    • 2006
  • The moment resisting frame has been well-known as it had very excellent seismic performance, and it has been widely used and constructed in the design of a lot of buildings. However, the moment resisting frame system did not exert the seismic performance during the earthquake in Northridge and Kobe sufficiently, and it produced the crack or brittle fracture on the joint. this study was to ]m tests with the full-scale test subject as parameters of existence of H-beam web high tensile bolt shearing joint and reinforcement of H-flange rib. This researcher was to anticipate the decrease of number of high tensile bolts and the improvement of workability through the double shear joint by the experiment, and improve the seismic performance through the reinforcement of rib plate. In addition, this study was to prevent the brittle fracture by the stress concentration through the non scallop.

Response Analysis of RC Bridge Pier with Various Superstructure Mass under Near-Fault Ground Motion (근단층지반운동에 대한 상부구조 질량 변화에 따른 RC 교각의 응답분석)

  • Park, Chang-Kyu;Chung, Young-Soo;Lee, Dae-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.667-673
    • /
    • 2010
  • The near fault ground motion (NFGM) is characterized by a single long period velocity pulse with large magnitude. NFGMs have been observed in recent strong earthquakes, Northridge (1994), Japan Kobe (1995), Turkey Izmit (1999), China Sichuan (2008), Haiti (2010) etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the far field ground motion (FFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this research is to investigate and analyze the seismic response of reinforced concrete bridge piers subjected to near-fault ground motions. The seismic performance of six RC bridge piers depending on three confinement steel ratios and three superstructure mass was investigated on the shaking table. From these experimental results, it was confirmed that the reduction of seismic performance was observed for test specimens with lower confinement steel ratio or more deck weight. The displacement ductility of RC bridge piers in terms of the stiffness degradation is proposed based on test results the shaking table.

Performance Evaluation of Steel Moment Resisting Frames with Seismic Retrofit Using Fragility Contour Method (내진 보강된 철골모멘트골조의 취약성 등고선을 통한 성능평가)

  • Kim, Su Dong;Lee, Kihak;Jeong, Seong-Hoon;Kim, Do Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.33-41
    • /
    • 2013
  • Due to a high level of system ductility, steel moment resisting frames have been widely used for lateral force resisting structural systems in high seismic zones. Earthquake field investigations after Northridge earthquake in 1994 and Kobe earthquake in 1995 have reported that many steel moment resisting frames designed before 1990's had suffered significant damages and structural collapse. In this research, seismic performance assessment of steel moment resisting frames designed in accordance with the previous seismic provisions before 1990's was performed. Buckling-restrained braces and shear walls are considered for seismic retrofit of the reference buildings. Increasing stiffness and strength of the buildings using buckling-restrained braces and shear walls are considered as options to rehabilitate the damaged buildings. Probabilistic seismic performance assessment using fragility analysis results is used for the criteria for determining an appropriate seismic retrofit strategy. The fragility contour method can be used to provide an intial guideline to structural engineers when various structural retrofit options for the damaged buildings are available.

Development of Dam Earthquake Monioring System and Application of Earthquake Records for Dam Safety Management against Earthquake (지진대비 댐안전관리를 위한 지진감시시스템 구축 및 계측기록 활용)

  • Ha, Ik-Soo;Lee, Jong-Wook;Cho, Sung-Eun;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1389-1396
    • /
    • 2008
  • The recent Sichuan earthquake(2008) in China and Iwate-Miyazaki earthquake(2008) in Japan give Korea peninsula warning that it is no more safety zone against damage by earthquake events. So, rapid and appropriate countermeasures for dam operation and management against earthquake are needed. In Korea earthquake design standard(MOCT, 1997) has been revised after Kobe earthquake. Installation of seismometer and monitoring of earthquake for special class dams is requlated in dam aseismic design standard(MOCT, 2001). Accelerometer installation project for existing dams has been carrying out by K-water to establish an earthquake network for dam safety. Real-time dam earthquake monitoring network has also been developed to detect an earthquake efficiently and to warn to dam administrators as soon as possible. In this study, dam real-time earthquake monitoring system developed by K-water was introduced and applicability of real earthquake record measured by this system to dam safety management was illustrated.

  • PDF

Uniform Hazard Spectrum for Seismic Design of Fire Protection Facilities (소방시설의 내진설계를 위한 등재해도 스펙트럼)

  • Kim, Jun-Kyoung;Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • Since the Northridge earthquake (1994) and Kobe earthquake (1995), the concept of performance-based design has been actively introduced to design major structures and buildings. Recently, the seismic design code was established for fire protection facilities. Therefore, the important fire protection facilities should be designed and constructed according to the seismic design code. Accordingly, uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level, such as operational, immediate occupancy, life safety, and collapse prevention, are required for performance-based design. Using the method of probabilistic seismic hazard analysis (PSHA), the uniform hazard spectra for 5 major cities in Korea with a recurrence period of 500, 1,000, and 2,500 years corresponding to frequencies of (0.5, 1.0, 2.0, 5.0, 10.0)Hz and PGA, were analyzed. The expert panel was comprised of 10 members in seismology and tectonics. The ground motion prediction equations and several seismo tectonic models suggested by 10 expert panel members in seismology and tectonics were used as the input data for uniform hazard spectrum analysis. According to sensitivity analysis, the parameter of spectral ground motion prediction equations has a greater impact on the seismic hazard than seismotectonic models. The resulting uniform hazard spectra showed maximum values of the seismic hazard at a frequency of 10Hz and also showed the shape characteristics, which are similar to previous studies and related technical guides for nuclear facilities.

A Study on Dynamic Analyses of Cut and Cover Tunnel during Earthquakes (개착터널에 대한 지진 시 동적수치해석에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.237-250
    • /
    • 2015
  • Underground structures such as a tunnel have been considered as safer than structures on the ground during earthquake. However, severe damages of underground structures occurred at subway tunnel during 1995 Kobe Earthquake and such damages are gradually increased. In this study, a dynamic behavior of a cut and cover tunnel surrounded by weathered soils is investigated using Mohr-Coulomb Model. Parametric study was carried out for boundary conditions, tensile strength, and earthquake magnitudes. The results of numerical analyses in terms of ground deformations and stresses acting on the lining were quite dependent on the side boundary condition (free or fix conditions) and tensile strength of surrounding soils. The ground was deformed upward at the end of earthquake when the side boundary condition was fixed, whereas residual deformations were not predicted when it was free. When the tensile strength of a soil was set to the same as its cohesion, residual deformation was less than 1cm, regardless of side boundary conditions or input accelerations. In addition to that, stress conditions at the maximum deformation and end of earthquake were within an allowable range and considered as safe. Proper boundary conditions and material properties such as tensile strength are quite important because they may significantly impact on the results of dynamic analyses.

The Evaluation of Seismic Performance for Concrete-filled Steel Piers (콘크리트 충전 강교각의 내진 성능 평가)

  • 정지만;장승필;인성빈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.53-58
    • /
    • 2002
  • A recent development, a concrete-filled steel(CFS) pier is an alternative to a reinforced concrete bridge pier in an urban area, because of its fast construction and excellent ductility against earthquakes. The capacity of CFS piers has not been used to a practical design, because there is no guide of a seismic design for CFS piers. Therefore, the guide of a seismic design value is derived from tests of CFS piers in order to apply it to a practical seismic design. Steel piers and concrete-filled steel piers are tested with constant axial load using quasi-static cyclic lateral load to check ductile capacity and using the real Kobe ground motion of pseudo-dynamic test to verify seismic performance. The results prove that CFS piers have more satisfactory ductility and strength than steel piers and relatively large hysteretic damping in dynamic behaviors. The seismic performance of steel and CFS piers is quantified on the basis of the test results. These results are evaluated through comparison of both the response modification factor method by elastic response spectrum and the performance-based design method by capacity spectrum and demand spectrum using effective viscous damping. The response modification factor of CFS piers is presented to apply in seismic design on a basis of this evaluation for a seismic performance.

Evaluation of the Seismic Safely of Concrete Gravity Dams (콘크리트 중력식 댐의 내진 안전성 평가)

  • 소진호;정영수;김용곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • Recently, the seismic safety evaluation of concrete gravity dams is raised due to the damage or the failure of dams occurred by the 1995 Kobe earthquake, the 1999 Taiwan earthquake, etc. Failre of dam may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about 'earthquake-resistance' or 'seismic safety'of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic safety of concrete gravity dams on the basis of the evaluation method of seismic safety of concrete gravity dams in U.S.A., Japan, Canada, and etc. level 1 is a preliminary evaluation which is for purpose f screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. Finally, level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dam on operation showed good seismic performance under the designed artificial earthquake.

Probabilistic Analysis for Longitudinal Displacement due to Skew Angle of Bridges under Scenario Earthquakes (모의 지진하중에 의한 교량의 사가에 따른 축방향변위에 대한 확률론적 해석)

  • 전환석;이대형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.553-558
    • /
    • 1998
  • Since the mid of the 20th century in the world, it has been observed that the number of minor or moderate earthquake motions tend to be increased year by year. Owing to the topographical condition, moreover, large numbers of skew bridges have been constructed for the requirements of more than DB18 ton bridge in Korea. It has been also observed from foreign countries that lots of superstructures collapse in bridge were occurred in previous earthquakes, inclusive of 1995 Kobe earthquake. This is caused by a relative displacement between the upper and lower structure of bridge by the earthquake and the rotation with respect to the vertical axis of skew bridges, which were subjected to and earthquake motion. In this study, the probabilistic analysis of unseating failure of skew bridges under scenario earthquake has been carried out by evaluating the longitudinal displacement of skew bridges.

  • PDF

Seismic Response Characteristics of Layered Ground Considering Viscoelastic Effects of Clay (점성토의 점탄성 특성을 고려한 층상지반의 지진응답특성)

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.19-26
    • /
    • 2011
  • In order to estimate the viscous effects of clay over a wide range of strain levels, we confirmed the performance of a viscoelastic-viscoplastic constitutive model by simulating cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of natural marine clay. The viscoelastic-viscoplastic constitutive model was then incorporated into an effective stress-based seismic response analysis to estimate the effects of an intermediate clay layer on the behavior of sand layers. Seismic response was simulated by the cyclic viscoelastic-viscoplastic constitutive model created with data recorded at Rokko Island, Kobe, Japan. The results show that a cyclic viscoelastic-viscoplastic constitutive model can provide a good description of dynamic behavior including viscoelastic effects, within a small strain range.