• 제목/요약/키워드: Knowledge Structures

검색결과 721건 처리시간 0.021초

A primo vessel-like structure in a dog with inflammatory pseudotumor

  • Cho, Sung-Jin;Hong, Sun-Hwa;Han, Sang-Jun;Kim, Ok-Jin
    • 한국동물위생학회지
    • /
    • 제35권1호
    • /
    • pp.77-82
    • /
    • 2012
  • Inflammatory pseudotumor (IPT) is a term defining a mass characterized microscopically by a proliferation of bland mesenchymal spindle cells infiltrated by diffuse mixed inflammatory cells with a predominance of plasma cells and lymphocytes. Here, we show the primo vessel-like structure of the primo-vascular system (PVS) in a dog with IPT. A 6-years old male Mongrel dog was diagnosed with an abnormal mass (diameter 5.5 cm, weight 22 g) near left preputial area. The dog was submitted to the surgical detectomy of the mass. During the surgical operation, we observed primo vessel-like material. After fixations, the masses appeared macroscopically as lipoid-like, firm, white to grey masses, measuring $5{\times}8cm$. Histologically, cellular infiltration into the muscular layers was frequently seen. The mesenchymal proliferation remained the main component of the mass and was composed of myofibroblastic-like spindle cells characterized by globular, irregular nuclei containing open chromatin and a prominent nucleolus. On the basis of the histopathologic lesions, the subcutaneous mass was diagnosed as IPT. Also, we detected a primo vessel-like structures in some areas of the IPT tissues. These were observed as novel thread-like structures and bundle of tubular structures. To our knowledge, this report is the first case of primo vessel-like structure in a dog with IPT.

Practicalities of structural health monitoring

  • Shrive, P.L.;Brown, T.G.;Shrive, N.G.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.357-367
    • /
    • 2009
  • Structural Health Monitoring (SHM), particularly remote monitoring, is an emerging field with great potential to help infrastructure owners obtain more and up-to-date knowledge of their structures. The methodology could provide supplemental information to guide the frequency and extent of visual inspections, and the possible need for maintenance. The instrumentation for a SHM system needs to be developed with longevity and the objectives for the system in mind. Sensors need to be selected for reliability and durability, sited where they provide the maximum information for the objectives, and where they can be accessed and replaced should the need arise over the monitoring period. With the rapid changes now occurring with sensors and software, flexibility needs to be in place to allow the system to be upgraded over time. Damage detection needs to be considered in terms of the type of damage that needs to be detected, informing maintenance requirements, and how detection can be achieved. Current vibration analysis techniques appear not yet to have achieved the necessary sensitivity for that purpose. Societal factors will influence the design of a SHM system in terms of the sophistication of the instrumentation and methodology employed.

Middleware services for structural health monitoring using smart sensors

  • Nagayama, T.;Spencer, B.F. Jr.;Mechitov, K.A.;Agha, G.A.
    • Smart Structures and Systems
    • /
    • 제5권2호
    • /
    • pp.119-137
    • /
    • 2009
  • Smart sensors densely distributed over structures can use their computational and wireless communication capabilities to provide rich information for structural health monitoring (SHM). Though smart sensor technology has seen substantial advances during recent years, implementation of smart sensors on full-scale structures has been limited. Hardware resources available on smart sensors restrict data acquisition capabilities; intrinsic to these wireless systems are packet loss, data synchronization errors, and relatively slow communication speeds. This paper addresses these issues under the hardware limitation by developing corresponding middleware services. The reliable communication service requires only a few acknowledgement packets to compensate for packet loss. The synchronized sensing service employs a resampling approach leaving the need for strict control of sensing timing. The data aggregation service makes use of application specific knowledge and distributed computing to suppress data transfer requirements. These middleware services are implemented on the Imote2 smart sensor platform, and their efficacy demonstrated experimentally.

Approaching the assessment of ageing bridge infrastructure

  • Boller, Christian;Starke, Peter;Dobmann, Gerd;Kuo, Chen-Ming;Kuo, Chung-Hsin
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.593-608
    • /
    • 2015
  • In many of the industrialized countries an increasing amount of infrastructure is ageing. This has become specifically critical to bridges which are a major asset with respect to keeping an economy alive. Life of this infrastructure is scattering but often little quantifiable information is known with respect to its damage condition. This article describes how a damage tolerance approach used in aviation today may even be applied to civil infrastructure in the sense that operational life can be applied in the context of modern life cycle management. This can be applied for steel structures as a complete process where much of the damage accumulation behavior is known and may even be adopted to concrete structures in principle, where much of the missing knowledge in damage accumulation has to be substituted by enhanced inspection. This enhanced and continuous inspection can be achieved through robotic systems in a first approach as well as built in sensors in the sense of structural health monitoring (SHM).

인접구조물의 내진성능개선을 위한 준능동 MR감쇠기의 GA-최적퍼지제어 (GA-based Optimal Fuzzy Control of Semi-Active Magneto-Rheological Dampers for Seismic Performance Improvement of Adjacent Structures)

  • 윤중원;박관순;옥승용
    • 한국안전학회지
    • /
    • 제26권4호
    • /
    • pp.69-79
    • /
    • 2011
  • This paper proposes a GA-based optimal fuzzy control technique for the vibration control of earthquakeexcited adjacent structures interconnected with semi-active magneto-rheological(MR) dampers. Rule-based fuzzy logic controllers are designed first by implementing heuristic knowledge and the genetic algorithm(GA) is then introduced to optimally tune the fuzzy controllers for enhancing the seismic performance of semi-active control system. For practical implementation, the fuzzy controller simply uses locally measured responses of the dampers involved and directly returns the input voltage to the magneto-rheological dampers in real time through the fuzzy inference mechanism. The local measurement based fuzzy controller provides optimal damping force in a decentralized manner so that it does not require a primary central controller unlike the conventional semi-active control techniques. As a result, it can avoid the unbridgeable discrepancy between the desired control force and the actual damper force that may occur in the conventional control approaches. The validity and effectiveness of the proposed control method are shown numerically on two 20-story earthquake-excited buildings interconnected with MR dampers.

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

Static analysis of rubber components with piezoelectric patches using nonlinear finite element

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.23-42
    • /
    • 2009
  • In order to reduce vibration or to control shape of structures made of metal or composites, piezoelectric materials have been extensively used since their discovery in 1880's. A recent trend is also seen to apply piezoelectric materials to flexible structures made of rubber-like materials. In this paper a non-linear finite element model using updated Lagrangian (UL) approach has been developed for static analysis of rubber-elastic material with surface-bonded piezoelectric patches. A compressible stain energy function has been used for modeling the rubber as hyperelastic material. For formulation of the nonlinear finite element model a twenty-node brick element is used. Four degrees of freedom u, v and w and electrical potential ${\varphi}$ per node are considered as the field variables. PVDF (polyvinylidene fluoride) patches are applied as sensors/actuators or sensors and actuators. The present model has been applied to bimorph PVDF cantilever beam to validate the formulation. It is then applied to study the smart rubber components under different boundary and loading conditions. The results predicted by the present formulation are compared with the analytical solutions as well as the available published results. Some results are given as new ones as no published solutions available in the literatures to the best of the authors' knowledge.

An intelligent health monitoring method for processing data collected from the sensor network of structure

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.703-716
    • /
    • 2018
  • Rapid detection of damages in civil engineering structures, in order to assess their possible disorders and as a result produce competent decision making, are crucial to ensure their health and ultimately enhance the level of public safety. In traditional intelligent health monitoring methods, the features are manually extracted depending on prior knowledge and diagnostic expertise. Inspired by the idea of unsupervised feature learning that uses artificial intelligence techniques to learn features from raw data, a two-stage learning method is proposed here for intelligent health monitoring of civil engineering structures. In the first stage, $Nystr{\ddot{o}}m$ method is used for automatic feature extraction from structural vibration signals. In the second stage, Moving Kernel Principal Component Analysis (MKPCA) is employed to classify the health conditions based on the extracted features. In this paper, KPCA has been implemented in a new form as Moving KPCA for effectively segmenting large data and for determining the changes, as data are continuously collected. Numerical results revealed that the proposed health monitoring system has a satisfactory performance for detecting the damage scenarios of a three-story frame aluminum structure. Furthermore, the enhanced version of KPCA methods exhibited a significant improvement in sensitivity, accuracy, and effectiveness over conventional methods.

Shape sensing with inverse finite element method for slender structures

  • Savino, Pierclaudio;Gherlone, Marco;Tondolo, Francesco
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.217-227
    • /
    • 2019
  • The methodology known as "shape sensing" allows the reconstruction of the displacement field of a structure starting from strain measurements, with considerable implications for structural monitoring, as well as for the control and implementation of smart structures. An approach to shape sensing is based on the inverse Finite Element Method (iFEM) that uses a variational principle enforcing a least-squares compatibility between measured and analytical strain measures. The structural response is reconstructed without the knowledge of the mechanical properties and load conditions but based only on the relationship between displacements and strains. In order to efficiently apply iFEM to the most common structural typologies of civil engineering, its formulation according to the kinematical assumptions of the Bernoulli-Euler theory is presented. Two beam inverse finite elements are formulated for different loading conditions. Depending on the type of element, the relationship between the minimum number of required measurement stations and the interpolation order is defined. Several examples representing common applications of civil engineering and involving beams and frames are presented. To simulate the experimental strain data at the station points and to verify the accuracy of the displacements obtained with the iFEM shape sensing procedure, a direct FEM analysis of the considered structures is performed using the LUSAS software.

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.