• 제목/요약/키워드: Knowledge Information Database

검색결과 579건 처리시간 0.027초

Intelligent Query Processing Using a Meta-Database KaDB

  • Huh, Soon-Young;Hyun, Moon-Kae
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.161-171
    • /
    • 1999
  • Query language has been widely used as a convenient tool to obtain information from a database. However, users demand more intelligent query processing systems that can understand the intent of an imprecise query and provide additional useful information as well as exact answers. This paper introduces a meta-database and presents a query processing mechanism that supports a variety of intelligent queries in a consistent and integrated way. The meta-database extracts data abstraction knowledge form an underlying database on the basis of a multilevel knowledge representation framework KAH. In cooperation with the underlying database, the meta-database supports four types of intelligent queries that provide approximately or conceptually equal answers as well as exact ones.

  • PDF

Hiding Sensitive Frequent Itemsets by a Border-Based Approach

  • Sun, Xingzhi;Yu, Philip S.
    • Journal of Computing Science and Engineering
    • /
    • 제1권1호
    • /
    • pp.74-94
    • /
    • 2007
  • Nowadays, sharing data among organizations is often required during the business collaboration. Data mining technology has enabled efficient extraction of knowledge from large databases. This, however, increases risks of disclosing the sensitive knowledge when the database is released to other parties. To address this privacy issue, one may sanitize the original database so that the sensitive knowledge is hidden. The challenge is to minimize the side effect on the quality of the sanitized database so that non-sensitive knowledge can still be mined. In this paper, we study such a problem in the context of hiding sensitive frequent itemsets by judiciously modifying the transactions in the database. Unlike previous work, we consider the quality of the sanitized database especially on preserving the non-sensitive frequent itemsets. To preserve the non-sensitive frequent itemsets, we propose a border-based approach to efficiently evaluate the impact of any modification to the database during the hiding process. The quality of database can be well maintained by greedily selecting the modifications with minimal side effect. Experiments results are also reported to show the effectiveness of the proposed approach.

아파트 경매를 위한 웹 기반의 지능형 의사결정지원 시스템 구현 (Implementation of a Web-Based Intelligent Decision Support System for Apartment Auction)

  • 나민영;이현호
    • 한국정보처리학회논문지
    • /
    • 제6권11호
    • /
    • pp.2863-2874
    • /
    • 1999
  • Apartment auction is a system that is used for the citizens to get a house. This paper deals with the implementation of a web-based intelligent decision support system using OLAP technique and data mining technique for auction decision support. The implemented decision support system is working on a real auction database and is mainly composed of OLAP Knowledge Extractor based on data warehouse and Auction Data Miner based on data mining methodology. OLAP Knowledge Extractor extracts required knowledge and visualizes it from auction database. The OLAP technique uses fact, dimension, and hierarchies to provide the result of data analysis by menas of roll-up, drill-down, slicing, dicing, and pivoting. Auction Data Miner predicts a successful bid price by means of applying classification to auction database. The Miner is based on the lazy model-based classification algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm to reflect the characteristics of auction database.

  • PDF

데이터 마이닝과 퍼지인식도 기반의 인과관계 지식베이스 구축에 관한 연구 (A Study on the Development of Causal Knowledge Base Based on Data Mining and Fuzzy Cognitive Map)

  • Kim, Jin-Sung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.247-250
    • /
    • 2003
  • Due to the increasing use of very large databases, mining useful information and implicit knowledge from databases is evolving. However, most conventional data mining algorithms identify the relationship among features using binary values (TRUE/FALSE or 0/1) and find simple If-THEN rules at a single concept level. Therefore, implicit knowledge and causal relationships among features are commonly seen in real-world database and applications. In this paper, we thus introduce the mechanism of mining fuzzy association rules and constructing causal knowledge base form database. Acausal knowledge base construction algorithm based on Fuzzy Cognitive Map(FCM) and Srikant and Agrawal's association rule extraction method were proposed for extracting implicit causal knowledge from database. Fuzzy association rules are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. It integrates fuzzy set concept and causal knowledge-based data mining technologies to achieve this purpose. The proposed mechanism consists of three phases: First, adaptation of the fuzzy membership function to the database. Second, extraction of the fuzzy association rules using fuzzy input values. Third, building the causal knowledge base. A credit example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstration the effectiveness of the proposed algorithm.

  • PDF

Extracting Database Knowledge from Query Trees

  • 윤종필
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.146-146
    • /
    • 1996
  • Although knowledge discovery is increasingly important in databases, the discovered knowledge sets may not be effectively used for application domains. It is partly because knowledge discovery does not take user's interests into account, and too many knowledge sets are discovered to handle efficiently. We believe that user's interests are conveyed by a query and if a nested query is concerned it may include a user's thought process. This paper describes a novel concept for discovering knowledge sets based on query processing. Knowledge discovery process is performed by: extracting features from databases, spanning features to generate range features, and constituting a knowledge set. The contributions of this paper include the following: (1) not only simple queries but also nested queries are considered to discover knowledge sets regarding user's interests and user's thought process, (2) not only positive examples (answer to a query) but also negative examples are considered to discover knowledge sets regarding database abstraction and database exceptions, and (3) finally, the discovered knowledge sets are quantified.

Extracting Database Knowledge from Query Trees

  • Yoon, Jongpil
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.145-156
    • /
    • 1996
  • Although knowledge discovery is increasingly important in databases, the discovered knowledge sets may not be effectively used for application domains. It is partly because knowledge discovery does not take user's interests into account, and too many knowledge sets are discovered to handle efficiently. We believe that user's interests are conveyed by a query and if a nested query is concerned it may include a user's thought process. This paper describes a novel concept for discovering knowledge sets based on query processing. Knowledge discovery process is performed by: extracting features from databases, spanning features to generate range features, and constituting a knowledge set. The contributions of this paper include the following: (1) not only simple queries but also nested queries are considered to discover knowledge sets regarding user's interests and user's thought process, (2) not only positive examples (answer to a query) but also negative examples are considered to discover knowledge sets regarding database abstraction and database exceptions, and (3) finally, the discovered knowledge sets are quantified.

  • PDF

객체 데이터베이스를 이용한 내용기반 이미지 검색 전문가 시스템 (An Expert System for Content-based Image Retrieval with Object Database)

  • 김영민;김성인
    • 제어로봇시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.473-482
    • /
    • 2008
  • In this paper we propose an expert system for content-based image retrieval with object database. The proposed system finds keyword by using knowledge-base and feature of extracted object, and retrieves image by using keyword based image retrieval method. The system can decrease error of image retrieval and save running time. The system also checks whether similar objects exist or not. If not, user can store information of object in object database. Proposed system is flexible and extensible, enabling experts to incrementally add more knowledge and information. Experimental results show that the proposed system is more effective than existing content-based image retrieval method in running time and precision.

형상 가공 정보의 지식 베이스 처리에 관한 연구 (A study on Knowledge based-processing of information to shape cutting)

  • 김희중;조우승;정재현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.970-973
    • /
    • 1995
  • The proposal of this paper is the constructing of knowledge database with manufacturing information. This database contains characteristics of workpiece materials, cutting tools, NC machines, manufacturing processes, and work conditions. And all shape in the system are feature models such base plate, step, hole, pocket, boss, and slot. These information generate a final decision for machining process by the expert system.

  • PDF

Intelligent Query Processing Using a Meta-Database KaDB

  • Huh, Soon-Young;Moon, Kae-Hyun
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.161-171
    • /
    • 1999
  • Query language has been widely used as a convenient tool to obtain information from a database. However, users demand more intelligent query processing systems that can understand the intent of an imprecise query and provide additional useful information as well as exact answers. This paper introduces a meta-database and presents a query processing mechanism that supports a variety of intelligent queries in a consistent and integrated way. The meta-database extracts data abstraction knowledge from an underlying database on the basis of a multilevel knowledge representation framework KAH. In cooperation with the underlying database, the meta-database supports four types of intelligent queries that provide approximately or conceptually equal answers as well as exact ones.

  • PDF

데이터 마이닝에서 샘플링 기법을 이용한 연속패턴 알고리듬 (An Algorithm for Sequential Sampling Method in Data Mining)

  • 홍지명;김낙현;김성집
    • 산업경영시스템학회지
    • /
    • 제21권45호
    • /
    • pp.101-112
    • /
    • 1998
  • Data mining, which is also referred to as knowledge discovery in database, means a process of nontrivial extraction of implicit, previously unknown and potentially useful information (such as knowledge rules, constraints, regularities) from data in databases. The discovered knowledge can be applied to information management, decision making, and many other applications. In this paper, a new data mining problem, discovering sequential patterns, is proposed which is to find all sequential patterns using sampling method. Recognizing that the quantity of database is growing exponentially and transaction database is frequently updated, sampling method is a fast algorithm reducing time and cost while extracting the trend of customer behavior. This method analyzes the fraction of database but can in general lead to results of a very high degree of accuracy. The relaxation factor, as well as the sample size, can be properly adjusted so as to improve the result accuracy while minimizing the corresponding execution time. The superiority of the proposed algorithm will be shown through analyzing accuracy and efficiency by comparing with Apriori All algorithm.

  • PDF