지식 그래프 기반의 질문 응답 문제는 자연어 질문들에 대한 깊은 이해뿐만 아니라, 대규모 지식 그래프 상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 필요로 한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프 상의 각 개체 노드와 이웃 노드 간의 양방향 특징 전파를 허용할뿐만 아니라, 두 이웃 노드 쌍 간의 맥락 정보까지 활용할 수 있는, 표현력이 뛰어난 쌍 선형 그래프 신경망(BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스인 Freebase, 자연어 질문 응답을 위한 벤치마크 데이터 집합들인 WebQuestionsSP와 MetaQA를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.
지식iN과 같은 사용자 참여 질의응답 커뮤니티에서 원하는 질문에 대한 답을 찾기 위해서는 검색 결과로 제공되는 다양한 문서를 일일이 확인하여 판단하는 과정이 필요하다. 만일 사용자가 원하는 답변을 자동으로 정제하여 제시할 수 있다면, 질의응답의 사용성이 크게 향상될 수 있다. 본 논문에서는 질의응답 데이터 분석을 통해 사용자의 질문의 유형을 단어, 목록, 도표, 글의 4가지 유형으로 분류하고, 문서 내 통계적 특성을 활용하여 각 분류별 답변을 자동으로 제시하기 위한 방식을 제안한다. 단어, 목록, 글 유형은 질의어에 대해 검색된 질문을 군집화하고, 군집 내 빈도와 질의어에 대한 근접도, 답변 신뢰도 등으로 계산된 답변 내 어휘의 적합도를 활용하여 요약한 답변을 사용자에게 제시한다. 도표형은 답변들에서 사용자의 의견 정보를 추출하여 의견 통계를 도표로 제시한다.
Question Answering (QA) 서비스는 사용자의 자연어 질의에 대응하는 정확한 답변을 제공하는 시스템이다. 본 연구는 특정 도메인에 관련한 사용자들의 질문에 대해 QA 서비스가 자동으로 대응하는 방법에 관한 연구이다. 이를 수행하기 위하여 사용자의 자연어 질문을 이해하고, 정형 데이터 및 비정형 데이터로부터 사용자 질문에 적합한 답변을 도출하여 제공하는 방법을 제시한다. 실험 결과 top 1 accuracy 68%, top 5 accuracy 77% 결과를 얻었다. 또한 본 논문은 QA 시스템 내부 모듈이 전체 accuracy에 미치는 영향에 대해서도 기술하였다.
최근 사람과 기계의 소통을 위해 QA (Question Answering) 시스템에 대한 요구가 증가하였다. QA 시스템 중 공간에 관련된 질문을 처리할 수 있는 폐쇄 도메인 QA 시스템을 GeoQA라 하는데 본 연구는 GeoQA 분야에서 주로 사용되던 RDF (Resource Description Framework)기반의 데이터베이스가 데이터 입출력 및 변형에 한계를 보인다는 점을 극복하기 위해 최근 주목받고 있는 새로운 형태의 그래프 데이터베이스인 LPG (Labeled Property Graph)를 사용하였다. 또한, LPG 쿼리(query)언어가 표준화되지 않아 GeoQA 시스템이 특정 제품에 의존할 수 있다는 점 때문에 API 형태의 쿼리 언어인 GraphQL (Graph Query Language)을 도입하여 다양한 LPG를 사용할 방안을 제시하였다. 본 연구에서는 공간 관련 질문이 입력되었을 때 답변을 검색할 수 있도록 대한민국 중심의 별도 데이터베이스를 구축하였는데 각 데이터는 국가공간정보포털 및 지방행정 인허가데이터개방 서비스에서 취득하였으며 각 공간 객체 간 공간적 관계는 미리 계산되어 그래프의 엣지(edge) 형태로 입력되었다. 사용자의 질문은 먼저 FOL (First Order Logic)형태를 거쳐 최종적으로 GraphQL로 변환되며 GraphQL 서버를 통해 데이터베이스에 전달되었다. 실험에 사용한 LPG로는 현재 가장 높은 점유율을 보이는 그래프 데이터베이스인 Neo4j를 선택하였고 내장 함수와 QGIS 일부가 공간 연산에 사용되었다. 시스템 구축 결과 사용자의 질문을 변환, Apollo GraphQL 서버를 통해 처리하고 데이터베이스로부터 적합한 답변을 얻을 수 있음을 확인하였다.
기존의 영상 기반 질문-응답(VQA) 문제들과는 달리, 새로운 영상 기반 상식 추론(VCR) 문제들은 영상에 포함된 사물들 간의 관계 파악과 답변 근거 제시 등과 같이 추가적인 심층 상식 추론을 요구한다. 본 논문에서는 영상 기반 상식 추론 문제들을 위한 새로운 심층 신경망 모델인 KG_VCR을 제안한다. KG_VCR 모델은 입력 데이터(영상, 자연어 질문, 응답 리스트 등)에서 추출하는 사물들 간의 관계와 맥락 정보들을 이용할 뿐만 아니라, 외부 지식 베이스인 ConceptNet으로부터 구해내는 상식 임베딩을 함께 활용한다. 특히 제안 모델은 ConceptNet으로부터 검색해낸 연관 지식 그래프를 효과적으로 임베딩하기 위해 그래프 합성곱 신경망(GCN) 모듈을 채용한다. VCR 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 본 논문에서는 제안 모델인 KG_VCR이 기존의 VQA 최고 모델과 R2C VCR 모델보다 더 높은 성능을 보인다는 것을 입증한다.
본 연구에서는 KGQA의 답변 성능 및 설명력을 높이기 위해 제공된 추론 경로를 스스로 평가하고 보강하는 방법을 제안한다. 제안하는 방법에서는 LLMs와 GNN을 활용하여 질의와 관련된 추론 경로를 지식 그래프에서 검색하였다. 검색된 추론 경로를 LLMs가 자가적으로 평가하여 보완이 필요하다고 판단될 경우, 질문과 관련된 외부 정보를 찾고 트리플로 변환하여 지식 그래프에 추가하였다. 이에 따라 LLMs가 보강된 트리플 셋을 통해 정답과 이유를 설명할 수 있도록 하였다. 추론 경로는 추론 결과 혹은 경로가 의미상으로 질문과 관계가 있는지 LLMs 스스로 평가하도록 하였으며, 텍스트 유사도를 통해 질문과 관련된 텍스트를 찾아내어 추론 경로를 보강하여 LLMs가 기존보다 정확하게 질문에 대한 정답을 설명할 수 있도록 하였다. WebQuestion Semantic Parsing 데이터셋을 이용하여 제안 방법의 성능을 평가한 결과, 기존 방법으로 생성한 추론 경로보다 높은 정확도로 정답을 제공하고 더 많은 종류의 질문에 설명을 출력하는 것을 증명하였다.
본 연구는 지식 기반 질문-답변(QA) 시스템을 개선하기 위해 기존 RAG(Retrieval Augmented Generation) 모델의 한계를 극복하고, Graph 기반의 향상된 RAG 시스템을 구현하여 품질 좋은 생성형 AI 서비스 개발을 목표로 하고 있다. 기존 RAG 모델은 검색된 정보를 활용해 높은 정확도와 유창성을 보이지만, 한 번 적재된 지식을 재작업 없이 사용해 답변을 생성하기 때문에 정확도가 떨어질 수 있다. 또한, RAG 구성 시점 이후의 실시간 데이터를 반영할 수 없어 맥락 이해 능력이 부족하고 편향된 정보 문제를 야기할 수 있다. 이러한 한계를 개선하기 위해 본 연구에서는 Graph 기술을 활용한 향상된 RAG 시스템을 구현하였다. 이 시스템은 정보를 효율적으로 검색하고 활용할 수 있도록 설계되었다. 특히, LangGraph를 활용하여 검색된 정보의 신뢰성을 평가하고, 다양한 정보를 종합하여 보다 정확하고 향상된 답변을 생성할 수 있도록 하였다. 또한, 구체적인 작동 방식과 주요 구현 단계 및 사례를 구현 코드와 검증 내용을 통해 제시하여 Advanced RAG 기술에 대한 이해를 높였다. 이를 통해 Advanced RAG를 활용한 기업 내 서비스 구현에 실질적인 지침을 제공하여 기업들이 적극적으로 활용할 수 있도록 하는 데 의미가 있다.
장면 그래프는 영상 내 물체들과 각 물체 간의 관계를 나타내는 지식 그래프를 의미한다. 본 논문에서는 3차원 실내 환경을 위한 3차원 장면 그래프를 생성하는 모델을 제안한다. 3차원 장면 그래프는 물체들의 종류와 위치, 그리고 속성들뿐만 아니라, 물체들 간의 3차원 공간 관계들도 포함한다. 따라서 3차원 장면 그래프는 에이전트가 활동할 실내 환경을 묘사하는 하나의 사전 지식 베이스로 볼 수 있다. 이러한 3차원 장면 그래프는 영상 기반의 질문과 응답, 서비스 로봇 등과 같은 다양한 분야에서 유용하게 활용될 수 있다. 본 논문에서 제안하는 3차원 장면 그래프 생성 모델은 크게 물체 탐지 네트워크(ObjNet), 속성 예측 네트워크(AttNet), 변환 네트워크(TransNet), 관계 예측 네트워크(RelNet) 등 총 4가지 부분 네트워크들로 구성된다. AI2-THOR가 제공하는 3차원 실내 가상환경들을 이용한 다양한 실험들을 통해, 본 논문에서 제안한 모델의 높은 성능을 확인할 수 있었다.
지식 그래프 기반의 질문 응답 문제는 자연어 질문에 대한 이해뿐만 아니라, 기반이 되는 지식 그래프상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 요구한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프상의 추론 과정에서 추른 경로를 명확히 하기 위한 노드의 양방향 특정 전파와 이웃 노드들 간의 맥락 정보까지 각 노드의 특정값에 반영할 수 있는, 표현력이 풍부한 쌍 선형 그래프 신경망 (BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스 Freebase와 자연어 질문 응답 데이터 집합 WebQuestionsSP를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.