• 제목/요약/키워드: Knowledge Graph Question Answering

검색결과 9건 처리시간 0.024초

다중 홉 질문 응답을 위한 쌍 선형 그래프 신경망 기반 추론 (Bilinear Graph Neural Network-Based Reasoning for Multi-Hop Question Answering)

  • 이상의;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권8호
    • /
    • pp.243-250
    • /
    • 2020
  • 지식 그래프 기반의 질문 응답 문제는 자연어 질문들에 대한 깊은 이해뿐만 아니라, 대규모 지식 그래프 상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 필요로 한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프 상의 각 개체 노드와 이웃 노드 간의 양방향 특징 전파를 허용할뿐만 아니라, 두 이웃 노드 쌍 간의 맥락 정보까지 활용할 수 있는, 표현력이 뛰어난 쌍 선형 그래프 신경망(BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스인 Freebase, 자연어 질문 응답을 위한 벤치마크 데이터 집합들인 WebQuestionsSP와 MetaQA를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.

Q&A 문서의 검색 결과 요약을 활용한 질의응답 시스템 (Question and Answering System through Search Result Summarization of Q&A Documents)

  • 유동현;이현아
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권4호
    • /
    • pp.149-154
    • /
    • 2014
  • 지식iN과 같은 사용자 참여 질의응답 커뮤니티에서 원하는 질문에 대한 답을 찾기 위해서는 검색 결과로 제공되는 다양한 문서를 일일이 확인하여 판단하는 과정이 필요하다. 만일 사용자가 원하는 답변을 자동으로 정제하여 제시할 수 있다면, 질의응답의 사용성이 크게 향상될 수 있다. 본 논문에서는 질의응답 데이터 분석을 통해 사용자의 질문의 유형을 단어, 목록, 도표, 글의 4가지 유형으로 분류하고, 문서 내 통계적 특성을 활용하여 각 분류별 답변을 자동으로 제시하기 위한 방식을 제안한다. 단어, 목록, 글 유형은 질의어에 대해 검색된 질문을 군집화하고, 군집 내 빈도와 질의어에 대한 근접도, 답변 신뢰도 등으로 계산된 답변 내 어휘의 적합도를 활용하여 요약한 답변을 사용자에게 제시한다. 도표형은 답변들에서 사용자의 의견 정보를 추출하여 의견 통계를 도표로 제시한다.

도메인 질의응답 시스템 (Domain Question Answering System)

  • 윤승현;임은희;김덕호
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권2호
    • /
    • pp.144-147
    • /
    • 2015
  • Question Answering (QA) 서비스는 사용자의 자연어 질의에 대응하는 정확한 답변을 제공하는 시스템이다. 본 연구는 특정 도메인에 관련한 사용자들의 질문에 대해 QA 서비스가 자동으로 대응하는 방법에 관한 연구이다. 이를 수행하기 위하여 사용자의 자연어 질문을 이해하고, 정형 데이터 및 비정형 데이터로부터 사용자 질문에 적합한 답변을 도출하여 제공하는 방법을 제시한다. 실험 결과 top 1 accuracy 68%, top 5 accuracy 77% 결과를 얻었다. 또한 본 논문은 QA 시스템 내부 모듈이 전체 accuracy에 미치는 영향에 대해서도 기술하였다.

속성 그래프 및 GraphQL을 활용한 지식기반 공간 쿼리 시스템 설계 (Design of Knowledge-based Spatial Querying System Using Labeled Property Graph and GraphQL)

  • 장한메;김동현;유기윤
    • 한국측량학회지
    • /
    • 제40권5호
    • /
    • pp.429-437
    • /
    • 2022
  • 최근 사람과 기계의 소통을 위해 QA (Question Answering) 시스템에 대한 요구가 증가하였다. QA 시스템 중 공간에 관련된 질문을 처리할 수 있는 폐쇄 도메인 QA 시스템을 GeoQA라 하는데 본 연구는 GeoQA 분야에서 주로 사용되던 RDF (Resource Description Framework)기반의 데이터베이스가 데이터 입출력 및 변형에 한계를 보인다는 점을 극복하기 위해 최근 주목받고 있는 새로운 형태의 그래프 데이터베이스인 LPG (Labeled Property Graph)를 사용하였다. 또한, LPG 쿼리(query)언어가 표준화되지 않아 GeoQA 시스템이 특정 제품에 의존할 수 있다는 점 때문에 API 형태의 쿼리 언어인 GraphQL (Graph Query Language)을 도입하여 다양한 LPG를 사용할 방안을 제시하였다. 본 연구에서는 공간 관련 질문이 입력되었을 때 답변을 검색할 수 있도록 대한민국 중심의 별도 데이터베이스를 구축하였는데 각 데이터는 국가공간정보포털 및 지방행정 인허가데이터개방 서비스에서 취득하였으며 각 공간 객체 간 공간적 관계는 미리 계산되어 그래프의 엣지(edge) 형태로 입력되었다. 사용자의 질문은 먼저 FOL (First Order Logic)형태를 거쳐 최종적으로 GraphQL로 변환되며 GraphQL 서버를 통해 데이터베이스에 전달되었다. 실험에 사용한 LPG로는 현재 가장 높은 점유율을 보이는 그래프 데이터베이스인 Neo4j를 선택하였고 내장 함수와 QGIS 일부가 공간 연산에 사용되었다. 시스템 구축 결과 사용자의 질문을 변환, Apollo GraphQL 서버를 통해 처리하고 데이터베이스로부터 적합한 답변을 얻을 수 있음을 확인하였다.

KG_VCR: 지식 그래프를 이용하는 영상 기반 상식 추론 모델 (KG_VCR: A Visual Commonsense Reasoning Model Using Knowledge Graph)

  • 이재윤;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권3호
    • /
    • pp.91-100
    • /
    • 2020
  • 기존의 영상 기반 질문-응답(VQA) 문제들과는 달리, 새로운 영상 기반 상식 추론(VCR) 문제들은 영상에 포함된 사물들 간의 관계 파악과 답변 근거 제시 등과 같이 추가적인 심층 상식 추론을 요구한다. 본 논문에서는 영상 기반 상식 추론 문제들을 위한 새로운 심층 신경망 모델인 KG_VCR을 제안한다. KG_VCR 모델은 입력 데이터(영상, 자연어 질문, 응답 리스트 등)에서 추출하는 사물들 간의 관계와 맥락 정보들을 이용할 뿐만 아니라, 외부 지식 베이스인 ConceptNet으로부터 구해내는 상식 임베딩을 함께 활용한다. 특히 제안 모델은 ConceptNet으로부터 검색해낸 연관 지식 그래프를 효과적으로 임베딩하기 위해 그래프 합성곱 신경망(GCN) 모듈을 채용한다. VCR 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 본 논문에서는 제안 모델인 KG_VCR이 기존의 VQA 최고 모델과 R2C VCR 모델보다 더 높은 성능을 보인다는 것을 입증한다.

Research on improving KGQA efficiency using self-enhancement of reasoning paths based on Large Language Models

  • Min-Ji Seo;Myung-Ho Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.39-48
    • /
    • 2024
  • 본 연구에서는 KGQA의 답변 성능 및 설명력을 높이기 위해 제공된 추론 경로를 스스로 평가하고 보강하는 방법을 제안한다. 제안하는 방법에서는 LLMs와 GNN을 활용하여 질의와 관련된 추론 경로를 지식 그래프에서 검색하였다. 검색된 추론 경로를 LLMs가 자가적으로 평가하여 보완이 필요하다고 판단될 경우, 질문과 관련된 외부 정보를 찾고 트리플로 변환하여 지식 그래프에 추가하였다. 이에 따라 LLMs가 보강된 트리플 셋을 통해 정답과 이유를 설명할 수 있도록 하였다. 추론 경로는 추론 결과 혹은 경로가 의미상으로 질문과 관계가 있는지 LLMs 스스로 평가하도록 하였으며, 텍스트 유사도를 통해 질문과 관련된 텍스트를 찾아내어 추론 경로를 보강하여 LLMs가 기존보다 정확하게 질문에 대한 정답을 설명할 수 있도록 하였다. WebQuestion Semantic Parsing 데이터셋을 이용하여 제안 방법의 성능을 평가한 결과, 기존 방법으로 생성한 추론 경로보다 높은 정확도로 정답을 제공하고 더 많은 종류의 질문에 설명을 출력하는 것을 증명하였다.

지식 기반 QA개선을 위한 Advanced RAG 시스템 구현 방법: Graph Agent 활용 (A Graph-Agent-Based Approach to Enhancing Knowledge-Based QA with Advanced RAG)

  • 정천수
    • 지식경영연구
    • /
    • 제25권3호
    • /
    • pp.99-119
    • /
    • 2024
  • 본 연구는 지식 기반 질문-답변(QA) 시스템을 개선하기 위해 기존 RAG(Retrieval Augmented Generation) 모델의 한계를 극복하고, Graph 기반의 향상된 RAG 시스템을 구현하여 품질 좋은 생성형 AI 서비스 개발을 목표로 하고 있다. 기존 RAG 모델은 검색된 정보를 활용해 높은 정확도와 유창성을 보이지만, 한 번 적재된 지식을 재작업 없이 사용해 답변을 생성하기 때문에 정확도가 떨어질 수 있다. 또한, RAG 구성 시점 이후의 실시간 데이터를 반영할 수 없어 맥락 이해 능력이 부족하고 편향된 정보 문제를 야기할 수 있다. 이러한 한계를 개선하기 위해 본 연구에서는 Graph 기술을 활용한 향상된 RAG 시스템을 구현하였다. 이 시스템은 정보를 효율적으로 검색하고 활용할 수 있도록 설계되었다. 특히, LangGraph를 활용하여 검색된 정보의 신뢰성을 평가하고, 다양한 정보를 종합하여 보다 정확하고 향상된 답변을 생성할 수 있도록 하였다. 또한, 구체적인 작동 방식과 주요 구현 단계 및 사례를 구현 코드와 검증 내용을 통해 제시하여 Advanced RAG 기술에 대한 이해를 높였다. 이를 통해 Advanced RAG를 활용한 기업 내 서비스 구현에 실질적인 지침을 제공하여 기업들이 적극적으로 활용할 수 있도록 하는 데 의미가 있다.

3차원 가상 실내 환경을 위한 심층 신경망 기반의 장면 그래프 생성 (Deep Neural Network-Based Scene Graph Generation for 3D Simulated Indoor Environments)

  • 신동협;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권5호
    • /
    • pp.205-212
    • /
    • 2019
  • 장면 그래프는 영상 내 물체들과 각 물체 간의 관계를 나타내는 지식 그래프를 의미한다. 본 논문에서는 3차원 실내 환경을 위한 3차원 장면 그래프를 생성하는 모델을 제안한다. 3차원 장면 그래프는 물체들의 종류와 위치, 그리고 속성들뿐만 아니라, 물체들 간의 3차원 공간 관계들도 포함한다. 따라서 3차원 장면 그래프는 에이전트가 활동할 실내 환경을 묘사하는 하나의 사전 지식 베이스로 볼 수 있다. 이러한 3차원 장면 그래프는 영상 기반의 질문과 응답, 서비스 로봇 등과 같은 다양한 분야에서 유용하게 활용될 수 있다. 본 논문에서 제안하는 3차원 장면 그래프 생성 모델은 크게 물체 탐지 네트워크(ObjNet), 속성 예측 네트워크(AttNet), 변환 네트워크(TransNet), 관계 예측 네트워크(RelNet) 등 총 4가지 부분 네트워크들로 구성된다. AI2-THOR가 제공하는 3차원 실내 가상환경들을 이용한 다양한 실험들을 통해, 본 논문에서 제안한 모델의 높은 성능을 확인할 수 있었다.

쌍 선형 그래프 신경망을 이용한 지식 그래프 기반 질문 응답 (Question Answering over Knowledge Graphs Using Bilinear Graph Neural Network)

  • 이상의;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.563-566
    • /
    • 2020
  • 지식 그래프 기반의 질문 응답 문제는 자연어 질문에 대한 이해뿐만 아니라, 기반이 되는 지식 그래프상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 요구한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프상의 추론 과정에서 추른 경로를 명확히 하기 위한 노드의 양방향 특정 전파와 이웃 노드들 간의 맥락 정보까지 각 노드의 특정값에 반영할 수 있는, 표현력이 풍부한 쌍 선형 그래프 신경망 (BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스 Freebase와 자연어 질문 응답 데이터 집합 WebQuestionsSP를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.