• 제목/요약/키워드: Knowledge & Rule Extraction

검색결과 50건 처리시간 0.027초

은닉지식 추출을 이용한 신경망회로망 정제 (Neural Network Refinement using Hidden Knowledge Extraction)

  • 김현철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권11호
    • /
    • pp.1082-1087
    • /
    • 2000
  • 신경회로망 구조의 정제(精製)는 회로망의 일반화능력이나 효율성의 관점에서 중요한 문제이다. 본 논문에서는 feed-forward neural networks로부터 은닉지식을 추출하는 방법을 사용하여 네트워크 재구성을 통한 정제방법을 제안한다. 먼저, 효율적인 if-then rule 추출방법을 제시하고 그 추출된 룰들을 사용하여 룰기반 네트워크로 변환하는 과정을 보여준다. 생성된 룰기반 네트워크 fully connected network에 비하여 상당히 축소된 연결 복잡도를 가지게 되며 일반적으로 더 우수한 일반화능력을 가지게 된다. 본 연구는 도메인 지식이 없이 데이타만 사용하여 어떻게 정제된 룰기반 신경망회로를 생성하고 있는가를 보여준다. 도메인 데이타들에 대한 실험결과도 제시하였다.

  • PDF

지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구 (Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base)

  • 김재헌;이명진
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.43-61
    • /
    • 2019
  • 최근 4차 산업혁명과 함께 인공지능 기술에 대한 연구가 활발히 진행되고 있으며, 이전의 그 어느 때보다도 기술의 발전이 빠르게 진행되고 있는 추세이다. 이러한 인공지능 환경에서 양질의 지식베이스는 인공지능 기술의 향상 및 사용자 경험을 높이기 위한 기반 기술로써 중요한 역할을 하고 있다. 특히 최근에는 인공지능 스피커를 통한 질의응답과 같은 서비스의 기반 지식으로 활용되고 있다. 하지만 지식베이스를 구축하는 것은 사람의 많은 노력을 요하며, 이로 인해 지식을 구축하는데 많은 시간과 비용이 소모된다. 이러한 문제를 해결하기 위해 본 연구에서는 기계학습을 이용하여 지식베이스의 구조에 따라 학습을 수행하고, 이를 통해 자연어 문서로부터 지식을 추출하여 지식화하는 방법에 대해 제안하고자 한다. 이러한 방법의 적절성을 보이기 위해 DBpedia 온톨로지의 구조를 기반으로 학습을 수행하여 지식을 구축할 것이다. 즉, DBpedia의 온톨로지 구조에 따라 위키피디아 문서에 기술되어 있는 인포박스를 이용하여 학습을 수행하고 이를 바탕으로 자연어 텍스트로부터 지식을 추출하여 온톨로지화하기 위한 방법론을 제안하고자 한다. 학습을 바탕으로 지식을 추출하기 위한 과정은 문서 분류, 적합 문장 분류, 그리고 지식 추출 및 지식베이스 변환의 과정으로 이루어진다. 이와 같은 방법론에 따라 실제 지식 추출을 위한 플랫폼을 구축하였으며, 실험을 통해 본 연구에서 제안하고자 하는 방법론이 지식을 확장하는데 있어 유용하게 활용될 수 있음을 증명하였다. 이러한 방법을 통해 구축된 지식은 향후 지식베이스를 기반으로 한 인공지능을 위해 활용될 수 있을 것으로 판단된다.

그래프마이닝을 활용한 빈발 패턴 탐색에 관한 연구 (A Methodology for Searching Frequent Pattern Using Graph-Mining Technique)

  • 홍준석
    • Journal of Information Technology Applications and Management
    • /
    • 제26권1호
    • /
    • pp.65-75
    • /
    • 2019
  • As the use of semantic web based on XML increases in the field of data management, a lot of studies to extract useful information from the data stored in ontology have been tried based on association rule mining. Ontology data is advantageous in that data can be freely expressed because it has a flexible and scalable structure unlike a conventional database having a predefined structure. On the contrary, it is difficult to find frequent patterns in a uniformized analysis method. The goal of this study is to provide a basis for extracting useful knowledge from ontology by searching for frequently occurring subgraph patterns by applying transaction-based graph mining techniques to ontology schema graph data and instance graph data constituting ontology. In order to overcome the structural limitations of the existing ontology mining, the frequent pattern search methodology in this study uses the methodology used in graph mining to apply the frequent pattern in the graph data structure to the ontology by applying iterative node chunking method. Our suggested methodology will play an important role in knowledge extraction.

가전제품의 설계지원을 위한 안전규격 지식베이스의 구축 (Construction of a knowledge-base for safety standards to support the design of household electrical appliances)

  • 이효섭;한순흥
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.106-113
    • /
    • 1994
  • Household electrical appliances should be designed to satisfy safety standards. An expert system is implemented to support the design process. The general-purpose expert system shell. ART-IM which is running under MS-DOS environment, is used to construct the knowledge-base. A set of rules has been extracted from the EN 60 335-1 that is British standard specification for the safety of household and similar electrical appliances. The main focus of this paper is on codes that have systematic and mormative structures. The internal structure of the safety standard is analysed to improve the process of rule extraction.

  • PDF

인공 신경망에서 은닉 유닛 명확화를 이용한 효율적인 규칙추출 방법 (A Efficient Rule Extraction Method Using Hidden Unit Clarification in Trained Neural Network)

  • 이헌주;김현철
    • 컴퓨터교육학회논문지
    • /
    • 제21권1호
    • /
    • pp.51-58
    • /
    • 2018
  • 인공 신경망은 최근 다양한 분야에서 뛰어난 성능을 보여주고 있다. 하지만 인공 신경망이 학습한 지식이 정확히 어떤 내용인지를 사람이 파악하기 어렵다는 문제점이 존재하는데, 이를 해결하기 위한 방법 중 하나로 학습된 인공 신경망에서 규칙을 추출하는 방법들이 연구되고 있다. 본 연구에서는 학습된 인공 신경망으로부터 규칙을 추출하는 방법 중 하나인 ordered-attribute search(OAS) 알고리즘을 사용하여 인공 신경망으로부터 규칙을 추출해보고, 추출된 규칙을 개선하기 위해 규칙들을 분석하였다. 그 결과로 은닉 층의 출력값 분포가 OAS 알고리즘을 이용해 추출된 규칙의 정확도에 영향을 주는 것을 파악하였고, 은닉 유닛 명확화 기법을 통해 은닉 층 출력값을 이진화하여 효율적인 규칙을 추출할 수 있음을 제시하였다.

웹 페이지의 내재 규칙 습득 과정에서 규칙식별 역할에 대한 효과 분석 (Effect of Rule Identification in Acquiring Rules from Web Pages)

  • 강주영;이재규;박상언
    • 지능정보연구
    • /
    • 제11권1호
    • /
    • pp.123-151
    • /
    • 2005
  • 오늘날 자원의 보고라 할 수 있는 웹에는 자연어로 표현된 텍스트와 테이블들로 구성된 무수히 많은 문서들이 존재하고 있다. 이러한 웹 문서들로부터 규칙을 습득하고 습득된 규칙과 웹 문서간의 일관성을 유지하기 위해, 본 논문에서는 확장형 규칙 표식 언어 (extensible Rule Markup Language, XRML) 체계를 개발하였다. XRML은 웹 페이지에 내재되어 있는 규칙을 식별하여 자동으로 정형화된 규칙을 생성할 수 있도록 지원하는 규칙 식별 표식 언어 (Rule Identification Markup Language, XRML)와 구조화된 규칙 표현을 위한 규칙 구조 표식 언어 (Rule Structure Markup Language)로 구성된다. 특히, RIML은 HTML안에 내재되어 있는 규칙을 HTML 문서에 직접 명시할 수 있도록 설계되었기 때문에, RIML을 통해 웹페이지에 있는 규칙들을 식별하고 이 식별된 규칙은 RSML으로 표현된 정형화된 규칙으로 자동 변환될 수 있다. 본 논문에서는 RIML의 설계 시 웹페이지로부터 규칙을 식별하는 과정에서 발생하는 공유되는 변수 (variables) 및 값 (values),생략된 어구 ,동의어와 같은 몇 가지 중요한 현상들을 발견하고 이를 해결하고자 하였다. 제안된 XRML 접근 방법의 성능을 측정하고자, 3개의 대표적인 온라인 서점인 Amazon.com, BarnesandNoble.com, Powells.com의 실제 웹페이지들로부터 배송 및 환불과 관련된 규칙을 습득하여 XRML의 효과를 측정하는 실험을 수행하였다. 실험 결과에 따르면, 웹페이지로부터 규칙은 $97.7\%$의 매우 높은 정확성을 가지고 습득되었으며, 생성된 규칙의 완전성은 $88.5\%$로 측정되어, XRML이 특정 주제에 관한 전문가 시스템을 구축하기 위해 웹페이지로부터 규칙을 추출할 때 효율적인 도구가 될 수 있음이 예시되었다.

  • PDF

개념간 관계의 추출과 명명을 위한 통계적 접근방법 (A Statistical Approach for Extracting and Miming Relation between Concepts)

  • 김희수;최익규;김민구
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.479-486
    • /
    • 2005
  • 온톨로지는 차세대 시맨틱 웹을 위한 논리의 기반을 구성하기 위해 제안되었다. 이러한 온톨로지는 특정 분야에 대한 지식을 정형화된 형태로 표현함으로써 기계에 의한 지식의 이해를 가능하게 하고, 이를 사용하여 사용자의 요구에 알맞은 지능화된 서비스를 제공할 수 있게 한다. 하지만, 온톨로지의 구축과 유지는 많은 사람의 시간과 노력을 요구한다. 본 고에서는 온톨로지 구축 방법의 일환으로, 문서로부터 온톨로지를 구성하는 개념간의 관계를 정의하는 자동화된 방법을 제안한다. 본 고에서 제안된 방법은 특정 분야의 문서에 존재하는 개념을 기반으로 개념간의 연관 규칙을 형성하는 개념 쌍을 찾고, 두 개념 사이에 존재하는 내용의 군집화를 통해 두 개념간의 관계를 설명하는 패턴을 찾는다. 마지막으로 패턴간의 군집화를 사용하여 개념 사이의 일반화된 관계를 명시한다. 본 고에서는 제안된 방법을 검증하기 위한 방법으로 TREC(Text REtrieval Conference)에서 제공하는 문서집합을 사용하여 개념간의 관계를 추출, 평가하였으며, 그 결과 제안된 방법은 개념간의 관계를 설명하는 유용한 정보를 제공할 수 있음을 보여준다.

Recognition of hand written hangeul based on the stroke order of the elementary segment

  • Song, Jeong-Young;Akizuki, Kageo;Lee, Hee-Hyol;Choi, Won-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.302-306
    • /
    • 1994
  • This paper describes how to recognize hand written Hangeul character using the stroke order of the elementary segment. The recognition system is constructed of parts : character input part, segment disassembling part, character element extraction part and character recognition part. The character input part reads the character and performs thinning algorithm. In the segment disassembling part, the input character is disassembled into elementary segments using the direction codes and the feature parameters. In the character element extraction part, we extract the character element using the stroke order and the knowledge rule. Finally, we able to recognize the hand written Hangeul characters by assembling the character elements, in the character recognition part.

  • PDF

인터넷 상점에서 개인화 광고를 위한 장바구니 분석 기법의 활용 (Application of Market Basket Analysis to Personalized advertisements on Internet Storefront)

  • 김종우;이경미
    • 경영과학
    • /
    • 제17권3호
    • /
    • pp.19-30
    • /
    • 2000
  • Customization and personalization services are considered as a critical success factor to be a successful Internet store or web service provider. As a representative personalization technique, personalized recommendation techniques are studied and commercialized to suggest products or services to a customer of Internet storefronts based on demographics of the customer or based on an analysis of the past purchasing behavior of the customer. The underlining theories of recommendation techniques are statistics, data mining, artificial intelligence, and/or rule-based matching. In the rule-based approach for personalized recommendation, marketing rules for personalization are usually collected from marketing experts and are used to inference with customers data. however, it is difficult to extract marketing rules from marketing experts, and also difficult to validate and to maintain the constructed knowledge base. In this paper, we proposed a marketing rule extraction technique for personalized recommendation on Internet storefronts using market basket analysis technique, a well-known data mining technique. Using marketing basket analysis technique, marketing rules for cross sales are extracted, and are used to provide personalized advertisement selection when a customer visits in an Internet store. An experiment has been performed to evaluate the effectiveness of proposed approach comparing with preference scoring approach and random selection.

  • PDF

병렬확장을 활용한 규칙생성 기법 (A Rule Generation Technique Utilizing a Parallel Expansion Method)

  • 이기철;김진봉
    • 한국정보처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.942-950
    • /
    • 1998
  • 가공되지 않은 데이터에서 직접 규칙 형태의 지식을 추출하는 문제는 자료의 홍수 속에서 정보의 부족을 느끼는 모순을 해결하기 위한 데이터 마이닝 분야에서 매우 중요하다. 논리 최적화 도구는 주어진 ON 집합과 DC 집합을 이용하여 최적화된 형태의 지식을 추출하는 도구인데, 본 논문에서는 논리 최적화 기법 중 병렬 확장 기법을 이용하여 초기 지식을 생성한 후 정렬, 축소, 규칙 확장 등의 방법을 이용하여 실 세계 데이터에 적용할 수 있는 규칙이 생성될 수 있음을 보였다. 이와 같은 새로운 접근 방법이 종래의 C4.5 등의 결정 트리 기법에 손색없는 규칙을 생성할 수 있음을 실험을 통해 입증하였다.

  • PDF