• Title/Summary/Keyword: Know-plaintext Attack

Search Result 2, Processing Time 0.013 seconds

S-PRESENT Cryptanalysis through Know-Plaintext Attack Based on Deep Learning (딥러닝 기반의 알려진 평문 공격을 통한 S-PRESENT 분석)

  • Se-jin Lim;Hyun-Ji Kim;Kyung-Bae Jang;Yea-jun Kang;Won-Woong Kim;Yu-Jin Yang;Hwa-Jeong Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.193-200
    • /
    • 2023
  • Cryptanalysis can be performed by various techniques such as known plaintext attack, differential attack, side-channel analysis, and the like. Recently, many studies have been conducted on cryptanalysis using deep learning. A known-plaintext attack is a technique that uses a known plaintext and ciphertext pair to find a key. In this paper, we use deep learning technology to perform a known-plaintext attack against S-PRESENT, a reduced version of the lightweight block cipher PRESENT. This paper is significant in that it is the first known-plaintext attack based on deep learning performed on a reduced lightweight block cipher. For cryptanalysis, MLP (Multi-Layer Perceptron) and 1D and 2D CNN(Convolutional Neural Network) models are used and optimized, and the performance of the three models is compared. It showed the highest performance in 2D convolutional neural networks, but it was possible to attack only up to some key spaces. From this, it can be seen that the known-plaintext attack through the MLP model and the convolutional neural network is limited in attackable key bits.

A Fuzzy Identity-Based Signcryption Scheme from Lattices

  • Lu, Xiuhua;Wen, Qiaoyan;Li, Wenmin;Wang, Licheng;Zhang, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4203-4225
    • /
    • 2014
  • Fuzzy identity-based cryptography introduces the threshold structure into identity-based cryptography, changes the receiver of a ciphertext from exact one to dynamic many, makes a cryptographic scheme more efficient and flexible. In this paper, we propose the first fuzzy identity-based signcryption scheme in lattice-based cryptography. Firstly, we give a fuzzy identity-based signcryption scheme that is indistinguishable against chosen plaintext attack under selective identity model. Then we apply Fujisaki-Okamoto method to obtain a fuzzy identity-based signcryption scheme that is indistinguishable against adaptive chosen ciphertext attack under selective identity model. Thirdly, we prove our scheme is existentially unforgeable against chosen message attack under selective identity model. As far as we know, our scheme is the first fuzzy identity-based signcryption scheme that is secure even in the quantum environment.