• Title/Summary/Keyword: Knee moment

Search Result 188, Processing Time 0.029 seconds

Effects of Landing Tasks on the Anterior Cruciate Ligament Injury Risk Factors in Female Basketball Players (여자 농구 선수들의 착지 유형이 전방십자인대 손상위험 요인에 미치는 영향)

  • Lee, Gye-San;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.385-390
    • /
    • 2014
  • The purpose of this study was to investigate the effects of landing tasks on the anterior cruciate ligament (ACL) injury risk factors in female basketball players. Fifteen female basketball players performed a drop landing and a drop landing with a vertical jump on the 40 cm height box. Three-dimensional motion analysis system and ground reaction force system was used for calculate the ACL injury risk factors. Paired samples t-test with Bonfferoni correction were performed. The drop landing with a vertical jump had the higher knee flexion angle, peak knee varus moment, trunk flexion angle than a drop landing. However, the drop landing had the higher trunk rotation angle than a drop landing with a vertical jump. These results indicate that seemingly minor variations between drop landing and drop landing with a vertical jump may influence the ACL injury risk factors. Caution should be used when comparing studies using different landing tasks.

Effects of Gymnasts Shoes on Risk Factors of Anterior Cruciate Ligament Injuries during Drop Landing in Female Gymnasts (여자 체조선수들의 드롭 랜딩 시 체조화 착용유무가 전방십자인대 부상 위험요인에 미치는 영향)

  • Lim, Bee-Oh;Ryu, Young;Kim, Kew-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.219-223
    • /
    • 2013
  • The purpose of the study was to investigate the effects of gymnasts shoes on risk factors of anterior cruciate ligament injuries during drop-landing followed by vertical jump in female gymnasts. Thirteen female gymnasts were recruited and performed randomly drop-landing followed by vertical jump in height of her knee with and without shoes. Kinematics and ground reaction data were collected to estimate the anterior cruciate ligament injuries risk factors. Data were analyzed with paired samples t-test with Bonferroni correction. Female gymnasts with shoes showed more reduced thigh maximum adduction angle, and knee maximum extension moment than without shoes. Female gymnasts with shoes showed more increased shank maximum abduction angle than without shoes. In conclusion, Female gymnasts with shoes reduced anterior cruciate ligament injuries risk factors.

Biomechanical Comparison of Good and Bad Performances within Individual in Maximum Vertical Jump (최대 수직 점프시 개인내 우수 수행과 비우수 수행의 역학적 비교)

  • Kim, Yong-Woon;Kim, Yong-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.489-497
    • /
    • 2009
  • The purpose of this study was to find differences of jumping performances within individual and to identify the influencing factors in these differences. 20 male subjects performed 6 maximal vertical jumps. The best(GP) & worst(BP) performance of each subject based on their jump height were compared in further analysis. There was a significant difference of approx. 10% in the jump height between GP and BP, which resulted from height of COM and vertical velocity at the instant of take-off. We could observe a significantly higher ankle moment in the GB more than the BP but no significant differences for the knee and hip joint. Also the maximum power of ankle joints in the GP were significantly higher than that in the BP. According to the results, the mechanical output of knee and hip joint are not as influential as that of ankle joint for difference of performance within individual. In conclusion, the results showed that mechanical output of the ankle joint could be more influential factors on the performances within individual although the knee and hip joint play an important role in the vertical jump. We therefore propose that more emphasis should be placed on the potentiation of the ankle joint for the training of the maximum vertical jump.

The Effects of Visual Biofeedback Balance Training on Functional Ability in Children with Cerebral Palsy : A Pilot Study

  • Yun, Chang-Kyo;Yoo, Ji-Na
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2016
  • PURPOSE: The purpose of this study is to examine the impact of balance training on a three-dimensional balance trainer that provides the up-and-down vertical movement of the knee joint and left-and-right horizontal movement, along with visual feedback on the functional ability of children with spastic cerebral palsy (CPs). METHODS: 8 CPs participated in this study. The experiment was implemented for 40 minutes, three times a week for a total of six weeks. The subjects received general physiotherapy for 15 minutes in each session focused on balance and walking, as based on the neuro-developmental treatment theory. Balance training was performed for 20 minutes on a three-dimensional balance trainer where knee joint movement providing visual feedback is applied. The evaluations were conducted before and after the test, and posture sway was measured using 10 Meter Walking Test (10MWT), Timed Up & Go Test (TUG), and the Good Balance System to evaluate the functional ability and balance of the subjects RESULTS: 10MWT was not statistically significant (p>.05). On the contrary, TUG and postural sway indicate static balance showed a statistically significant decrease (p<.05). In a static balance test using the Good Balance System, the average moving speed statistically significantly decreased in the AP and ML directions (p<.05), and the mean velocity moment also significantly decreased (p<.05). CONCLUSION: These findings suggested that balance training using the three-dimensional balance trainer, with the features of visual feedback and up-and-down knee joint movement effects on increasing dynamic and static balance.

The Study of Strategy for Energy Dissipation During Drop Landing from Different Heights (드롭랜딩 시 높이 변화에 따른 인체 분절의 충격흡수 전략에 관한 연구)

  • Cho, Joon-Haeng;Koh, Young-Chul;Lee, Dae-Yeon;Kim, Kyoung-Hun
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2012
  • The purpose of current study was to investigate the effects of the heights on the lower extremities, torso and neck segments for energy dissipation during single-leg drop landing from different heights. Twenty eight young healthy male subjects(age: $23.21{\pm}1.66yr$, height: $176.03{\pm}4.22cm$, weight: $68.93{\pm}5.36kg$) were participated in this study. The subjects performed the single-leg drop landing from the various height(30, 45 & 60 cm). Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. The results were as follows. First, the ROM at the ankle, knee, hip and trunk was increased with the increased heights but the ROM at the neck was increased in the 60cm. Second, the angular velocity, moment and eccentric work at the ankle, knee, hip, trunk, and neck was increased with the increased heights. Third, the contribution to total work at the knee joint was not significantly different, while the ankle joint rate was decreased and hip and neck rate was increased in the 60cm, and trunk rate was increased with the increased heights. Lastly, the increase in landing height was able to augment the level of energy dissipation not only at the lower extremities but also at the trunk and neck. The findings showed that drop landing affect trunk and neck with lower extremity joints. Therefore, we need to consider that trunk and neck strengthening including stability should be added to reduce sports injury during prevention training.

Kinematics and Kinetics of the Lower Limbs of a Walking Shoe with a Plate Spring and Cushioning Elements in the Heel during Walking

  • Park, Seung-Bum;Stefanyshyn, Darren;Pro, Stergiou;Fausto, Panizzolo;Kim, Yong-Jae;Lee, Kyung-Deuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • The purposes of this study was to investigate the biomechanical influence of the walking shoe with a plate spring in the heel and interchangeable heel cushioning elements. Eighteen subjects walked in three conditions: 1) the walking shoes Type A-1 with a soft heel insert, 2) the Type A-2 shoe with a stiff heel insert, 3) a general walking shoe(Type B). Ground reaction forces, leg movements, leg muscle activity and ankle, knee and hip joint loading were measured and calculated during overground walking. During walking, the ankle is a few degrees more dorsiflexed during landing and the knee is slightly more flexed during takeoff with the Type A shoes. As a result of the changes in the walking movement, the ground reaction forces are applied more quickly and the peak magnitudes are higher. Muscle activity of the quadricep, hamstring and calf muscles decrease during the first 25% of the stance phase when walking in the Type A shoes. The resultant joint moments at the ankle, knee and hip joints decrease from 30-40% with the largest reductions occurring during landing.

The Effects of Restricted Trunk Motion on the Performance of Maximum Vertical Jump (몸통 운동의 제약이 최대 수직점프의 수행에 미치는 영향)

  • Kim, Yong-Woon;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.27-36
    • /
    • 2009
  • The purpose of this study was to identify effects of restricted trunk motion on the performances of the maximum vertical jump. Ten healthy males performed normal countermovement jump(NJ) and control type of countermovement jump(CJ), in which subjects were required to restrict trunk motion as much as possible. The results showed 10% decreases of jumping height in CJ compared with NJ, which is primarily due to vertical velocity at take off. NJ with trunk motion produced significantly higher GRF than RJ, especially at the early part of propulsive phase, which resulted from increased moments on hip joint. And these were considered the main factors of performance enhancement in NJ. There were no significant differences in the mechanical outputs on knee and ankle joint between NJ and RJ. With trunk motion restricted, knee joint alternatively played a main role for propulsion, which is contrary on the normal jump that hip joint was highest contributor. And restricted trunk motion resulted in the changes of coordination pattern, knee-hip extension timing compared with normal proximal-distal sequence. In conclusion these results suggest that trunk motion is effective strategy for increasing performance of vertical jumping.

Effect of Passive Temperature Therapy of the Femoral Muscles on the Countermovement Jump Performance

  • Lee, Jintaek;Panday, Siddhartha Bikram;Byun, Kyungseok;Lee, Jusung;Hwang, Jinny;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.227-235
    • /
    • 2019
  • Objective: The purpose of this study was to evaluate the effect of passive-acute temperature therapy of the femoral muscle and dynamic warm-up on the countermovement jump performance. Method: Twenty male track and field athletes from national team underwent three treatments applied on the femoral muscles; cold temperature treatment, thermal treatment and dynamic warm-up. The variables extracted at 2 time points (pre-measurement and post measurement) were the temperature of the left and right femoral muscle, displacement & velocity of centre of mass, peak power out, range of motion and moment & power of the knee joint. Results: There was a statistically significant difference in the temperature of the femoral muscle according to measurement time which was high in the order of thermal treatment, dynamic treatment and cold treatment. The jump height was the highest in the dynamic warm-up with no statistically significant difference for the range of motion of the knee joint. The peak power out at dynamic warm-up and the power of the knee joint were statistically significant according to the treatment and measurement time. Conclusion: Local cold and thermal treatment of femoral muscles at ambient temperature did not improve jump performance, while dynamic warm-up was considered to be effective for maintaining the performance of the activities that require strong muscular power.

Effect of Toe Headings on the Biomechanics of Knee Joint in Drop Landing (드롭 랜딩에서 발끝자세가 무릎관절 운동역학에 미치는 영향)

  • Joo, Ji-Yong;Kim, Young-Kwan;Kim, Jae-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • The purpose of this study was to investigate the effect of the toe headings on the biomechanics of knee joint in drop landing in an attempt to find the potential risk of non-contact anterior cruciate ligament (ACL) injury. Seventeen male college students ($20.5{\pm}1.1$ yrs; $175.2{\pm}6.4$ cm; $68.8{\pm}5.8$ kg), having no neuromuscular injury within an year, participated in this study. Three different toe headings such as toe-in (TI), neutral (N), and toe-out (TO) positions were tested. Motion capturing system consisting of eight high speed cameras and two force platforms were used to collect three-dimensional motion data and ground reaction force data during landing. Results indicated joint angles and peak joint moments were significantly affected by the toe headings. TI position produced larger valgus angle due to reduce knee distance in addition to higher flexion and valgus moment than other positions, which was somewhat vulnerable to the potential risk of non-contact ACL injury. TO position caused the largest internal rotation angle with smaller joint moments. Therefore, it is recommended that athletes need to land on the ground with neutral toe-heading position as possible in order to minimize the potential risk of non-contact ACL injury.

Compensatory Strategy Observed in the Simulated Crouch Gait of Healthy Adults (정상인에서 쭈그림보행 시뮬레이션 시 관찰된 보상적 전략)

  • Kim, Tack-Hoon;Kwon, Oh-Yun;Yi, Chung-Hwi;Cho, Sang-Hyun;Kwon, Hyuk-Cheol;Kim, Young-Ho
    • Physical Therapy Korea
    • /
    • v.11 no.1
    • /
    • pp.53-67
    • /
    • 2004
  • This simulation study investigated the characteristics of normal gait, $30^{\circ}$ crouch gait, $30^{\circ}$ crouch/equinus gait, $45^{\circ}$ crouch gait, $45^{\circ}$ crouch/equinus gait. The knee flexion angles were restricted using a specially designed orthosis. This study was carried out in a motion analysis laboratory of the National Rehabilitation Center. Fifteen healthy male subjects were recruited for the study. The purposes of this study were (1) to compare spatiotemporal parameters, kinematics, and kinetic variables in the sagittal plane among the different gait, (2) to investigate the secondary compensatory strategy, and (3) to suggest biomechanical physical therapy treatment methods. The pattern and magnitude observed in each condition were similar to those of normal gait, except the peak knee extension moment of the unrestricted ankle motion-crouch gait. However, the speed of the $45^{\circ}$ crouch gait was half that of a normal gait. The ankle joint moment in the crouch/equinus gait showed the double-bump pattern commonly observed in children with spastic cerebral palsy, and there was no significant difference in gait speed as compared with normal gait. The peak ankle plantar-flexor moment and ankle power generated during the terminal stance in the crouch/equinus conditions were reduced as compared with normal and $45^{\circ}$ crouch gaits (p<.05). The crouch/equinus gait at the ankle joint was an effective compensatory mechanism. Since ankle plantarflexion contracture can be exacerbated secondary to the ankle compensatory strategy in the crouch/equinus gait, it is necessary to increase the range of ankle dorsiflexion and the strength of plantarflexion simultaneously to decrease the abnormal biomechanical advantages of the ankle joint.

  • PDF