• Title/Summary/Keyword: Knee Angles

Search Result 212, Processing Time 0.035 seconds

Activation of the Triceps Surae During Heel Raising Depend on the Knee Joint Flexion Angles (무릎관절 굽힘 각도에 따른 뒤꿈치 들기 동안 종아리 세갈래근의 활성도)

  • Kwon, Yu-Jeong;Song, Min-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.4
    • /
    • pp.497-503
    • /
    • 2013
  • PURPOSE: The purpose of this study was to investigate the change of triceps surae activation during heel raise test in standing among knee flexion angles($0^{\circ}C$, $30^{\circ}C$, $45^{\circ}C$, $60^{\circ}C$). METHODS: Twenty healthy individuals performed unilateral plantarflexion in standing with $0^{\circ}C$, $30^{\circ}C$, $45^{\circ}C$, $60^{\circ}C$ knee flexion. Activity of medial gastrocnemius(MG), lateral gastrocnemius(LG), soleus(Sol) was recorded with surface electromyography(EMG). RESULT: The muscle activations induced the four different positions were compared and results showed that was significant difference MG and LG while the angle increase from $0^{\circ}C$ to $30^{\circ}C$, $45^{\circ}C$, $60^{\circ}C$ but Sol did not show significant differences in every angle. CONCLUSION: This study suggest that $30^{\circ}C$ knee flexion is required to induce a significant mechanical disadvantage of gastrocnemius.

The Effect of Spor ts Taping on Lower Extremity Muscles in Ver tical Jump (수직점프 시 스포츠 테이핑이 하지의 운동학적 변인에 미치는 영향)

  • Lee, Jong-Hun;Lee, Young-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of taping-tape with or without using spiral taping on vertical jump. The subjects for this study were about 20 years old healthy male college students without muscloskeletal diseases. Data for EMG activity and Ground Reaction Force(GRF) were estimated at three knee angles(i.e., 45, 90 & full degree). As a result, there was no statistical significance in max GRF at 90 and full degree regardless of spiral taping-tape. On the other hand, statistical significance was found when vertically jumping at 45 degree knee angle(p<.05). All the data for EMG activity at the three knee angles were not statistically significant, but there was a trend for a decrease in average EMG activity in elector spinae & Medial gastrocnemius at 90 degree knee angle. Based on these data, initial flexor action of knee was stabilized with spiral taping-tape when vertically jumping, resulting in improved muscular activity in Medial gastrocnemius. In conclusion, taping technique for jumping ability associated muscles like quadriceps is also required to develop.

Comparison of the Joint Position Sense at Knee Joint According to Surface Conditions (지지 면 조건에 따른 무릎관절의 관절 위치 재현능력 비교)

  • Hong, Young-Ju;Weon, Jong-Hyuck;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.90-96
    • /
    • 2007
  • The purpose of this study was to compare the joint position sense at the knee joint at 3 different surface conditions by using the active knee joint angle reproduction test in the standing position. Twenty healthy volunteers (10 males and 10 females) age 20~29 years were recruited for this study. The knee joint position senses were assessed at three different surface conditions: on the floor (stable condition), TOGU (soft condition), and seat fit (unstable condition) in a closed kinetic chain. Testing orders were selected randomly. The absolute angle error was defined as the absolute difference between target angles ($30^{\circ}{\sim}45^{\circ}$ knee flexion) and subject perceived angle of the knee flexion. One way ANOVA was used to compare the absolute angle of error among 3 different conditions. The Independent t-test was used to compare the absolute angle of error between male and female. The error angles were significantly different among surface conditions ($1.3^{\circ}{\pm}1.2^{\circ}$ for the floor, $2.1^{\circ}{\pm}0.9^{\circ}$ for the TOGU, and $4.4^{\circ}{\pm}1.8^{\circ}$ for the seat fit, p<.05). There was no significant difference in error angle between male and female. In conclusion, the joint position sense of the knee joint in the closed kinetic chain decreased at unstable surface conditions. The result of this study indicates that surface conditions should be considered when assessing and training the joint position sense of the knee joint in clinical setting.

  • PDF

Electromyographic Analysis of Hamstrings and Quadriceps Coactivation During Single-limb-deadlift Exercises according to the Angle of the Knee Joint (무릎관절 각도에 따른 한 다리 데드리프트 운동시 뒤넙다리근과 넙다리네갈래근의 근활성도 비교)

  • Moon, Sang-Jae;Kim, Jeong-Wook;Park, Min-Chull
    • PNF and Movement
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate muscle activity according to knee flexion angle during single-limb-deadlift exercises. Methods: In total, 26 healthy volunteers participated. The single-limb-deadlift consisted of 0˚, 15˚, and 30˚ knee joint bending. The electromyography data were collected from the semitendinosus (SM), the biceps femoris (BF), the rectus femoris (RF), the vastus lateralis (VL), and the vastus medialis (VM). In addition, hamstrings and quadriceps (HQ) ratio was measured during the single-limb-deadlift using electromyography. Results: During the single-limb-deadlift, RF, VL, and VM were significantly higher at 30˚ bending angles compared to muscle activity of 0˚ and 15˚ knee-joint bending. The HQ ratio had significant differences in all three knee joint bending angles. In particular, the single-limb-deadlift carried out to a 30˚ knee-joint bend showed the closest value to 1. Conclusion: The most balanced coactivation ratios were observed during a single-limb-deadlift to a 30˚ knee-joint bend angle. A single-limb-deadlift at a knee-bend angle of less than 30˚ could be used as an exercise to prevent ACL injury. It could also be used for post-injury rehabilitation programs by increasing knee-joint stability.

Simulation of Three Dimensional Motion of the Knee Joint in Total Knee Arthroplasty (인공 무릎 관절의 3차원 운동 시뮬레이션)

  • Kim, Ki-Bum;Son, Kwon;Moon, Byung-Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1310-1315
    • /
    • 2003
  • Severe osteoarthrosis of the knee joint often requires total knee arthroplasty (TKA) to yield adequate knee function. The knee joint with TKA is expected ideally to restore the characteristics, however, this is not necessarily true in the clinical cases. In this study the motions of the intact joint and the joint after TKA were investigated numerically using computer simulation. For active knee extension from 90 degrees of flexion to full extension, the intact knee joint exhibited anterior tibial translation near the full extension while it showed only rotation for other flexion angles. Physiologic external rotation of the tibia near full extension was also noted in the analytical model. The analysis of the tibial insert of three different shapes (flat, semicurved, and curved types) demonstrated characteristic rotational and sliding motions as well as different contact forces.

  • PDF

Simulation of Three Dimensional Motion of the Knee Joint in Total Knee Arthroplasty (인공 무릎 관절의 3차원 운동 시뮬레이션)

  • Moon, Byung-Young;Son, Kwon;Kim, Ki-Bum;Seo, Jung-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.188-195
    • /
    • 2004
  • Severe osteoarthrosis of the knee joint often requires total knee arthroplasty(TKA) to yield adequate knee function. The knee joint with TKA is expected ideally to restore the characteristics, however, this is not necessarily 1.ue in the clinical cases. In this study the motion of the intact joint and the joint after. TKA were investigated numerically using computer simulation. For active knee extension from 90 degrees of flexion to full extension, the intact knee joint exhibited anterior tibial translation near the full extension and it showed only rotation at other flexion angles. Physiologic external rotation of the tibia near full extension known as screw home movement was also noted in the analytical model. The analysis of the tibial insert of three different shapes (flat, semicurved, and curved types) demonstrated characteristic rotational and sliding motion as well as different contact forces.

The Effect of Squat Training on an Unstable Support Surface According to the Angle Different Knee Flexion Angles on Healthy Adult's Balance Ability (무릎 각도의 차이에 따른 불안정 지지면에서의 스쿼트훈련이 건강한 성인의 균형 능력에 미치는 영향)

  • Bueong-ho Ryu;Hyun-pyo Hong;Tae-seok Choi
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.3
    • /
    • pp.1-11
    • /
    • 2023
  • Background: The aim of this study was to compare the effects of squat training on an unstable support surface with different knee flexion angles on the balance ability of normal adults balance ability. Methods: 41 university students in their 20s attending N University in Cheonan, Chungcheongnam-do were divided into a 45-degree knee-bending squat training group and a 90-degree knee-bending squat training group. The groups trained on an unstable support surface 20 minutes per day, 3 times a week, for a total of 4 weeks. Results: Changes in static balance ability were not significant within and between the groups for both the sway distance and sway area in the eyes open and eyes closed states (p<.05). The changes in dynamic balance ability were significant in the forward, leftward, and rightward angles in both groups at the limit of stability (p<.05), but not significant in the backward angle (p>.05), and the comparison between groups was not significant (p>.05). Conclusion: No significant difference between static balance-related variables within and between the groups was found. Significant changes in dynamic balance-related variables within the groups were found but not between the groups. Therefore, in future studies, it is considered necessary to study various ages and differentiated intervention periods, such as young adults and the population of elderly people, with sufficient intervention periods to affect balance ability.

  • PDF

The Effect of Shoe Heel Types and Gait Speeds on Knee Joint Angle in Healthy Young Women - A Preliminary Study

  • Chhoeum, Vantha;Wang, Changwon;Jang, Seungwan;Min, Se Dong;Kim, Young;Choi, Min-Hyung
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.41-50
    • /
    • 2020
  • The consequences of wearing high heels can be different according to the heel height, gait speed, shoe design, heel base area, and shoe size. This study aimed to focus on the knee extension and flexion range of motion (ROM) during gait, which were challenged by wearing five different shoe heel types and two different self-selected gait speeds (comfortable and fast) as experimental conditions. Measurement standards of knee extension and flexion ROM were individually calibrated at the time of heel strike, mid-stance, toe-off, and stance phase based on the 2-minute video recordings of each gait condition. Seven healthy young women (20.7 ± 0.8 years) participated and they were asked to walk on a treadmill wearing the five given shoes at a self-selected comfortable speed (average of 2.4 ± 0.3 km/h) and a fast speed (average of 5.1 ± 0.2 km/h) in a random order. All of the shoes were in size 23.5 cm. Three of the given shoes were 9.0 cm in height, the other two were flat shoes and sneakers. A motion capture software (Kinovea 0.8.27) was used to measure the kinematic data; changes in the knee angles during each gait. During fast speed gait, the knee extension angles at heel strike and mid-stance were significantly decreased in all of the 3 high heels (p<0.05). The results revealed that fast gait speed causes knee flexion angle to significantly increase at toe-off in all five types of shoes. However, there was a significant difference in both the knee flexion and extension angles when the gait in stiletto heels and flat shoes were compared in fast gait condition (p<0.05). This showed that walking fast in high heels leads to abnormal knee ROM and thus can cause damages to the knee joints. The findings in this preliminary study can be a basis for future studies on the kinematic changes in the lower extremity during gait and for the analysis of causes and preventive methods for musculoskeletal injuries related to wearing high heels.

A Kinematic Analysis of the National Elite Cross-Country Skiers' Double Poling Technique (국가대표 크로스컨트리 스키 선수들의 Double Poling 기술의 운동학적 분석)

  • Choi, Seul-Bi;Ryu, Jae-Kyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.259-268
    • /
    • 2011
  • This study aimed to examine the kinematic characteristics of the national elite cross-country skiers' double poling technique and to provide the quantitative data for better performance. Four male elite cross-country roller skiers skied maximum velocity with Double Pole technique. The cycle characteristics with angles of elbow, hip, and knee joint were analyzed. The results showed that CM velocity of the body was increased with the third cycle, the cycle time and length were also increased. The poling time and recovery time rate showed with 32.79%, 67.44% respectively. The joint angles with elbow, hip and knee were $106^{\circ}$, $133.14^{\circ}$ $156.87^{\circ}$ at pole in event, $158.94^{\circ}$, $65.7^{\circ}$, $140.19^{\circ}$ at pole out event. Elite skiers should decrease double poling time rate and increase recovery time rate in order to improve the double poling performance. The cycle length and velocity of the double poling should be increased for the better performance. The elbow angle should be minimized at pole in event with maximum extension until pole out event. The hip and knee angles should be increased for the recovery phase.

Influence of Anticipation on Landing Patterns during Side-Cutting Maneuver in Female Collegiate Soccer Players

  • Park, Eun-Jung;Lee, Jung-Ho;Ryue, Jae-Jin;Sohn, Ji-Hoon;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.391-395
    • /
    • 2011
  • To investigate the anticipatory effect on landing patterns during side-cutting maneuver, thirteen healthy female elite college soccer players participated in this study. Three-dimensional knee kinematics, effective mass and correlation between both these were measured and analyzed using a motion analysis and force plates. Each testing session included anticipated tasks, $45^{\circ}$ side-cutting tasks (AC), followed by a set of unexpected side-cutting (UC) in a random order. Knee flexion/extension, valgus/varus and internal/external rotation angles and effect mass were compared by using paired t-test. Also, correlation analysis was performed to identify the relationship between knee angles and effective mass. Effective mass during UC was greater than that during AC. Effective mass and maximum knee flexion angle were positively correlated during AC and not during UC. Based on the relationship between effective mass and knee flexion angle in AC, shock absorption can be controlled by knee joint flexion in pre-predicted movement condition. However, effective mass can not be controlled by knee flexion in UC condition. The unexpected load affects were more irregular on the knee joint, which may be one of the injury mechanisms of anterior cruciate ligament (ACL) in female soccer players.