• 제목/요약/키워드: Kinetics parameters

검색결과 610건 처리시간 0.02초

관절 역학과 협응이 최대 수직 점프의 개인내 수행차에 미치는 영향 (Effect of Joint Kinetics and Coordination on the Within-Individual Differences in Maximum Vertical Jump)

  • 김용운;서정석;한동욱
    • 한국운동역학회지
    • /
    • 제22권3호
    • /
    • pp.305-314
    • /
    • 2012
  • The purpose of this study was to investigate the effects of joint kinetics and coordination on within-individual differences in maximum vertical jump. 10 male subjects aged 20 to 30 performed six trials in maximum vertical jump and with based on jump height the good(GP) and bad(BP) performances for each subject were compared on joint kinetics of lower extremity and coordination parameters such as joint reverse and relative phase. The results showed that maximum moment, power, and work done of hip joint and maximum moment of ankle joint in GP were significantly higher than that in the BP but no significant differences for the knee joint. We could observe a significant difference in joint reverse timing between both conditions. And also the relative phase on ankle-knee and ankle-hip in GP were significantly lower than that in the BP, which means that in GP joint movements were more in-phase synchronized mode. In conclusion, mechanical outputs of hip and ankle joints had an effect on within-individual differences in vertical jump and the inter-joint coordination and coordination including sequence and timing of joint motion also might be high influential factors on the performances within individual.

Estimation of Nitrite Concentration in the Biological Nitritation Process Using Enzymatic Inhibition Kinetics

  • GIL, KYUNG-IK;EUI-SO CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.377-381
    • /
    • 2002
  • Recently, interests to remove nitrogen in the nitritation process have increased because of its economical advantages, since it could be a short-cut process to save both oxygen for nitrification and carbon for denitrification compared to a typical nitrification. However, the kinetics related with the nitritation process has not yet been fully understood. Furthermore, many useful models which have been successfully used for wastewater treatment processes cannot be used to estimate effluent nitrite concentration for evaluating performance of the nitritation process, since the process rate equations and population of microorganisms for nitrogen removal in these models have been set up only for the condition of full nitrification. Therefore, the present study was conducted to estimate an effluent nitrite concentration in the nitritation process with a concept of enzymatic inhibition kinetics based on long-term laboratory experiments. Using a nonlinear least squares regression method, kinetic parameters were accurately determined. By setting up a process rate equation along with a mass balance equation of the nitrite-oxidizing step, an effluent nitrite concentration in the nitritation process was then successfully estimated.

Helicobacter pylori Urease May Exist in Two Forms: Evidence from the Kinetic Studies

  • Gang, Jin-Gu;Yun, Soon-Kyu;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1565-1568
    • /
    • 2009
  • Purified Helicobacter pylori urease displayed a sigmoid curve in the plot of velocity versus [S] at urea concentrations less than 0.1mM. Under conditions where preservatives, glycerol, or polyethylene glycol (PEG) were added to the enzyme reaction, the substrate hydrolysis was consistent with Michaelis-Menten kinetics, with a $K_m$ of $0.21\;{\pm}\;0.06\;mM$ and a $V_{max}$ of $1,200\;{\pm}\;300\;{\mu}mol\;min^{-1}\;mg^{-1}$. However, at saturating substrate concentrations, the kinetic parameters of H. pylori urease were unaffected by the presence of the preservatives, and enzyme catalysis conformed to Michaelis-Menten kinetics. The Hill coefficients of the enzyme-catalyzed urea hydrolysis in the presence and absence of PEG were 1 and 2, respectively. Based on these findings, we suggest that H. pylori urease may exist in aggregated and dissociated forms, each with intact function but differing kinetics that may be of importance in maximizing urea breakdown at varying urea concentrations in vivo.

Sulpiride의 Polymorphism 및 그 약제학적(藥劑學的) 연구(硏究) (제3보)(第三報) -Polymorph에 따른 용출속도(溶出速度)- (Polymorphism of Sulpiride and Its Pharmaceutical Applications ( III ) -Dissolution Kinetics of Sulpiride Polymorphs-)

  • 이민화;김길수
    • Journal of Pharmaceutical Investigation
    • /
    • 제12권3호
    • /
    • pp.55-63
    • /
    • 1982
  • The dissolution kinetics for polymorphs of sulpiride, the effect of polyethylene glycol 4000 on the dissolution kinetics of sulpiride polymorphs and the dissolution rate difference between the tablets of polymorph form I and form II were investigated. The results could be summerized as followings: 1. The dissolution rates of two polymorphs of sulpiride were significantly different and the thermodynamic parameters calculated from dissolution kinetics were as follows; transition temperature $98^{\circ}C$, enthalpy change, -2.108 kcal/mole, free energy change, -783 cal/mole $(31.0^{\circ}C)$. 2. The dissolution rates of the two polymorphs of sulpiride containing polyethylene glycol 4000 were significantly diefferent in 0.01N HCl but the effect of polyethylene glycol on the dissolution rates of two polymorphs was not significant at low concentration of polyethylene glycol 4000. The study on the effect by stirring speed showed that at lower stirring speed the promotion rate of dissolution of polymorph form I is greater than that of form II. 3. In the case of tablets the dissolution rates of polymorph form I of sulpiride was two fold as compared with the results obtained from form II.

  • PDF

Investigation of Cure Kinetics and Storage Stability of the o-Cresol Novolac Epoxy Nanocomposites with Pre-intercalated Phenolic Hardeners

  • Hwang, Tae-Yong;Lee, Jae-Wook;Lee, Sang-Min;Nam, Gi-Joon
    • Macromolecular Research
    • /
    • 제17권2호
    • /
    • pp.121-127
    • /
    • 2009
  • The cure kinetics of the epoxy-layered, silicate nanocomposites were studied by differential scanning calorimetry under isothermal and dynamic conditions. The materials used in this study were o-cresol novolac epoxy resin and phenol novolac hardener, with organically modified layered silicates. Various kinetic parameters, including the reaction order, activation energy, and kinetic rate constants, were investigated, and the storage stability of the epoxy-layered silicate nanocomposites was measured. To synthesize the epoxy-layered silicate nanocomposites, the phenolic hardener underwent pre-intercalation by layered silicate. From the cure kinetics analyses, the organically modified layered silicate decreased the activation energy during cure reaction in the epoxy/phenolic hardener system. In addition, the storage stability of the nanocomposite with the pre-intercalated phenolic hardener was significantly increased compared to that of the nanocomposite with direct mixing of epoxy, phenolic hardener, and layered silicate. This was due to the protective effect of the reaction between onium ions and epoxide groups.

Curing Kinetics and Chemorheological Behavior of No-flow Underfill for Sn/In/Bi Solder in Flexible Packaging Applications

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Lee, Jin-Ho
    • ETRI Journal
    • /
    • 제38권6호
    • /
    • pp.1179-1189
    • /
    • 2016
  • A chemorheological analysis of a no-flow underfill was conducted using curing kinetics through isothermal and dynamic differential scanning calorimetry, viscosity measurement, and solder (Sn/27In/54Bi, melting temperature of $86^{\circ}C$) wetting observations. The analysis used an epoxy system with an anhydride curing agent and carboxyl fluxing capability to remove oxide on the surface of a metal filler. A curing kinetic of the no-flow underfill with a processing temperature of $130^{\circ}C$ was successfully completed using phenomenological models such as autocatalytic and nth-order models. Temperature-dependent kinetic parameters were identified within a temperature range of $125^{\circ}C$ to $135^{\circ}C$. The phenomenon of solder wetting was visually observed using an optical microscope, and the conversion and viscosity at the moment of solder wetting were quantitatively investigated. It is expected that the curing kinetics and rheological property of a no-flow underfill can be adopted in arbitrary processing applications.

초임계수에서 Cephradine 산화반응속도 (Fundamental Kinetics of Cephradine Oxidation in Supercritical Water)

  • 김영권;김인배
    • 한국환경보건학회지
    • /
    • 제30권2호
    • /
    • pp.133-139
    • /
    • 2004
  • The objective of this study was to investigate the destruction efficiency and to determine the fundamental parameters of oxidation kinetics under the supercritical water(SCW) condition. Target material was cephradine, toxic and antibiotic material, in the pharmaceutical wastewater. For this purpose, the effect of reaction temperature and oxidant were investigated on the destruction efficiency of cephradine. And the oxidation kinetics of cephradine was derived by using a empirical power-law model. The experiment was carried out in a cylindrical batch reactor made of Hastelloy C-276 which was endurable high temperature and pressure. The destruction efficiency of cephradine increased with increment of the temperature and reaction time. Also the type of oxidants was effected and oxidants(Air and $H_2O$$_2$) were enhanced the destruction efficiency. The global oxidation kinetics for cephradine has led to two rate expressions according to type of oxidant. - In the presence of air oxidant: Rate=k. $e^{-Ea}$RT/(Ceph.)$^{1.0}$ ( $O_2$)$^{0.51}$$\pm$0.05(k=3.27${\times}$$10^{5}$ sec. Ea=63.25 kJ/mole) - In the presence of $H_2O$$_2$ oxidant : Rate=kㆍ $e^{-Ea}$RT/(Ceph.)$^{1.0}$ ($H_2O$$_2$)$^{0.62}$$\pm$0.02(k=2.76${\times}$$10^4$/sec. Ea=47.65 kJ/mole)ole))

여러 CO2-O2 혼합기체에서 인도산 분말숯의 등온 연소반응 (Combustion Kinetics of Pulverized Indian Coal-Char in Different CO2-O2 Mixture Isothermally)

  • Saravanan, V.;Shivakumar, R.;babu, P. Niruguna;Ramakrishna
    • 대한화학회지
    • /
    • 제53권6호
    • /
    • pp.635-639
    • /
    • 2009
  • 여러 $CO_2-O_2$ 혼합기체에서 인도산 분말숯의 연소반응실험을 수행하였다. 샘플을 분쇄하여 58 마이크론보다 작은 채로 거르고 질소분위기에서 숯으로 만들었다. CPRI 방갈로에 있는 열분석기 (TGA-50)을 사용해 실험을 하였다. $CO_2-O_2$ 혼합기체는 몰비로 (80-20, 60-40, 40-60, 20-80)을 사용하였다. 활성화에너지 (E) 및 지수앞자리인자 (A)을 통합접근 및 수정된 Arrhenius식을 사용해 계산하였다.

염화페놀류 화합물의 HDTMA-montmorillonite에 대한 수착 동력학에 미치는 ph의 영향 (Effect of pH on the sorption kinetics of chlorophenols onto HDTMA-montmorillonite)

  • Mun Yong, Gwak;Dong Ik, Song
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.186-191
    • /
    • 2004
  • Sorption kinetics of 2-chlorophenol(2-ChP), 2,4-dichlorophenol(2,4-DChP) and 2,4,5-trichlorophenol (2,4,5-TChP), onto montmorillonite modified with hexadecyltrimethyl ammonium cations(HDTMA-mont) were investigated. One-site mass transfer model(OSMTM) and two compartment first-order kinetic model(TCFOKM) were used to analyze kinetics. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM in describing sorption and desorption kinetics of chlorophenols in HDTMA-mont. For all chlorophenols, the results of OSMTM analysis indicate that the predominant deprotonated speciation(at pH 9.15) exhibited higher mass transfer coefficient( $k_{s}$ ) than the protonated speciation(at pH 4.85). This is because the deprotonated speciation has stronger hydrophobic interaction than protonated speciation. Most sorption completes in three hours. The fraction of the fast sorption and the first-order sorption rate constants for the fast and slow compartments in TCFOKM were determined by fitting experimental data to the TCFOKM. The results of kinetics reveal that the fraction of the fast sorption( $f_1$) and the sorption rate constants in the fast compartments( $k_1$) were in the order 2,4,5-TChP > 2,4-DChP > 2-ChP, which agrees with the magnitude of the $K_{ow}$ . The first-order sorption rate constants in the fast compartment(10$^{0.8}$ - 10$^{1.22}$ h $r^{-1}$ ) were much larger than those in the slow compartment(10$^{-1}$.74/ - 10$^{-2}$.622/ h $r^{-1}$ ).> ).).

  • PDF

Kinetics of In-situ Degradation of Nerve Agent Simulants and Sarin on Carbon with and without Impregnants

  • Saxena, Amit;Sharma, Abha;Singh, Beer;Suryanarayana, Malladi Venkata Satya;Mahato, Timir Haran;Sharma, Mamta;Semwal, Rajendra Prasad;Gupta, Arvind Kumar;Sekhar, Krishnamurthy
    • Carbon letters
    • /
    • 제6권3호
    • /
    • pp.158-165
    • /
    • 2005
  • Room temperature kinetics of degradation of nerve agent simulants and sarin, an actual nerve agent at the surface of different carbon based adsorbent materials such as active carbon grade 80 CTC, modified whetlerite containing 2.0 and 4.0 % NaOH, active carbon with 4.0 % NaOH, active carbon with 10.0 % Cu (II) ethylenediamine and active carbon with 10.0 % Cu (II) 1,1,1,5,5,5-hexafluoroacetylacetonate were studied. The used adsorbent materials were characterized for surface area and micropore volume by $N_2$ BET. For degradation studies solution of simulants of nerve agent such as dimethyl methylphosphonate (DMMP), diethyl chlorophosphate (DEClP), diethyl cyanophosphate (DECnP) and nerve agent, i.e., sarin in chloroform were prepared and used for the uniform adsorption on the adsorbent systems using their incipient volume at room temperature. Degradation kinetics was monitored by GC/FID and was found to be following pseudo first order reaction. Kinetics parameters such as rate constant and half life were calculated. Half life of degradation with modified whetlerite (MWh/NaOH) system having 4.0 % NaOH was found to be 1.5, 7.9, 1206 and 20 minutes for DECnP, DEClP, DMMP and sarin respectively. MWh/NaOH system showed maximum degradation of simulants of nerve agents and sarin to their hydrolysis products. The reaction products were characterized using NMR technique. MWh/NaOH adsorbent was also found to be active against sulphur mustard.

  • PDF