• 제목/요약/키워드: Kinetics parameters

Search Result 610, Processing Time 0.423 seconds

Kinetics and Mechanism of Electron Transfer Reaction: Oxidation of Sulfanilic Acid by N-Chloro-p-Toluene Sulfonamide in Acid Perchlorate Medium

  • Sailani, Riya;Bhasin, Meneka;Khandelwal, C.L.;Sharma, P.D.
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.111-116
    • /
    • 2014
  • The kinetics and mechanism of oxidation of sulfanilic acid by N-chloro-p-toluene sulfonamide (chloramine-T) have been studied in acid medium. The species of chloramine-T were analysed on the basis of experimental observations and predominantly reactive species was taken into account for proposition of most plausible reaction mechanism. The derived rate law (1) conforms to such a mechanism. $$-\frac{d[CAT]}{dt}=\frac{kK_1[RNHCl][SA]}{K_1+[H^+]}$$ (1) All kinetic parameters were evaluated. Activation parameters such as energy and entropy of activation were calculated to be $(61.67{\pm}0.47)kJmol^{-1}$ and $(-62.71{\pm}2.48)kJmol^{-1}$ respectively employing Eyring equation.

Compilation of Respiration Model Parameters for Designing Modified Atmosphere Package of Fresh Produce

  • An, Duck Soon;Lee, Dong Sun
    • 한국포장학회지
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2015
  • Enzyme kinetics-based respiration model can be effectively used for estimating respiration rate in $O_2$ consumption and $CO_2$ production of fresh produce as a function of $O_2$ and $CO_2$ concentrations. Arrhenius equation can be applied to describe the temperature dependence of the respiration rate. Parameters of enzyme kinetics-based respiration model and activation energy of Arrhenius equation were compiled from analysis of literature data and closed system experiment. They enable to estimate the respiration rate for any modified atmosphere conditions at temperature of interest and thus can be used for design of modified atmosphere packaging of fresh produce.

  • PDF

Numerical Simulations of Subcritical Reactor Kinetics in Thermal Hydraulic Transient Phases

  • J. Yoo;Park, W. S.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.149-154
    • /
    • 1998
  • A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute(KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons from spallation reactions are essentially required for operating the reactor in its steady state. furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance of the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases.

  • PDF

MEMS 부품을 위한 다결정 박막의 탄성 물성치 추출 시스템과 적용 (Elastic Property Extraction System of Polycrystalline Thin-Films for Micro-Electro-Mechanical System Device and Its Applications)

  • 정향남;최재환;정회택;이준기
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.170-174
    • /
    • 2005
  • A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, effects of kinetics parameters on the extraction of effective elastic properties of polycrystalline thin-films are studied by using statistical method. Effects of the fraction of the potential site($f_p$) among the parameters for deposition process of microstructure on the extraction of effective elastic properties of polycrystalline thin-films are investigated. For this research, polysilicon is applied to this system as the polycrystalline thin-films.

MEMS 부품을 위한 다결정 박막의 탄성 물성치 추출 시스템의 매개변수의 영향 (Parametric Effects of Elastic Property Extraction System of Polycrystalline Thin-Films for Micro-Electro-Mechanical System Devices)

  • 정향남;최재환;정희택;이준기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.50-54
    • /
    • 2004
  • A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is already developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, the effects of kinetics parameters on the extraction of effective elastic properties of polycrystalline thin-films are studied by using statistical method. The effects of the fraction of the potential site( $f_{P}$ ) and the nucleation probability( $P_{N}$ ) among the parameters for deposition process of microstructure on the extraction of effective elastic properties of polycrystalline thin-films are studied.d.d.

  • PDF

석탄 비산재로 합성한 Na-A형 제올라이트에 의한 구리와 아연 이온의 동역학적 흡착 특성 (Adsorption Kinetics of Cupper and Zinc Ion with Na-A Zeolite Synthesized by Coal Fly Ash)

  • 이창한
    • 한국환경과학회지
    • /
    • 제20권12호
    • /
    • pp.1607-1615
    • /
    • 2011
  • The adsorption performance of cupper and zinc ions($Cu^{2+}$ and $Zn^{2+}$) in aqueous solution was investigated by an adsorption process on reagent grade Na-A zeolite(Z-WK) and Na-A zeolite (Z-C1) prepared from coal fly ash. Z-C1 was synthesized by a fusion method with coal fly ash from a thermal power plant. Batch adsorption experiment with Z-C1 was employed to study the kinetics and equilibrium parameters such as initial metal ions concentration and adsorption time of the solution on the adsorption process. Adsorption rate of metal ions occurred rapidly and adsorption equilibrium reached at less than 120 minutes. The kinetics data of $Cu^{2+}$ and $Zn^{2+}$ ions were well fitted by a pseudo-second-order kinetics model more than a pseudo-first-order kinetics model. The equilibrium data were well fitted by a Langmuir model and this result showed $Cu^{2+}$ and $Zn^{2+}$ adsorption on Z-C1 would be occupied by a monolayer adsorption. The maximum adsorption capacity($q_{max}$) by the Langmuir model was determined as $Cu^{2+}$ 99.8 mg/g and $Zn^{2+}$ 108.3 mg/g, respectively. It appeared that the synthetic zeolite, Z-C1, has potential application as absorbents in metal ion recovery and mining wastewater.

Kinetics and Mechanism of Ruthenium(III) Catalyzed Oxidation of Butanone and Uncatalyzed Oxidation of Cychlohexanone by Cerium(IV) in Acid Sulphate Medium

  • Sharma, Priyamvada;Hemkar, Shalini;Khandelwal, C.L.;Sharma, P.D.
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.28-33
    • /
    • 2012
  • The kinetics of ruthenium(III) chloride catalyzed oxidation of butanone and uncatalyzed oxidation of cyclohexanone by cerium(IV) in sulphuric acid medium have been studied. The kinetic rate law(I) in case of butanone conforms to the proposed mechanism. $$-\frac{1}{2}\frac{d[Ce^{IV}]}{dt}=\frac{kK[Ru^{III}][butanone]}{1+K[butanone]}$$ (1). However, oxidation of cyclohexanone in absence of catalyst accounts for the rate eqn. (2). $$-\frac{1}{2}\frac{[Ce^{IV}]}{dt}=\frac{(k_1+k_1K^'[H^+])[Ce^{IV}][Cyclohexanone]}{1+K_3[HSO_4^-]}$$ (2) Kinetics and activation parameters have been evaluated conventionally. Kinetically preferred mode of reaction is via ketonic and not the enolic forms.

Quantitative Polymerase Chain Reaction for Microbial Growth Kinetics of Mixed Culture System

  • Cotto, Ada;Looper, Jessica K.;Mota, Linda C.;Son, Ahjeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1928-1935
    • /
    • 2015
  • Microbial growth kinetics is often used to optimize environmental processes owing to its relation to the breakdown of substrate (contaminants). However, the quantification of bacterial populations in the environment is difficult owing to the challenges of monitoring a specific bacterial population within a diverse microbial community. Conventional methods are unable to detect and quantify the growth of individual strains separately in the mixed culture reactor. This work describes a novel quantitative PCR (qPCR)-based genomic approach to quantify each species in mixed culture and interpret its growth kinetics in the mixed system. Batch experiments were performed for both single and dual cultures of Pseudomonas putida and Escherichia coli K12 to obtain Monod kinetic parameters (μmax and Ks). The growth curves and kinetics obtained by conventional methods (i.e., dry weight measurement and absorbance reading) were compared with that obtained by qPCR assay. We anticipate that the adoption of this qPCR-based genomic assay can contribute significantly to traditional microbial kinetics, modeling practice, and the operation of bioreactors, where handling of complex mixed cultures is required.

Decolorization kinetics and characteristics of the azo dye acid red 18 in MSBR system at various HRTs and SRTs

  • Zonoozi, M. Hasani;Moghaddam, M.R. Alavi;Maknoon, R.
    • Membrane and Water Treatment
    • /
    • 제5권4호
    • /
    • pp.281-293
    • /
    • 2014
  • The present work aimed to study the decolorization kinetics and characteristics of a selected azo dye under the influence of two key operational parameters including hydraulic retention time (HRT) and solid retention time (SRT). The decolorization efficiency and the two important criteria of k and normalized k (k/MLSS) were evaluated in lab-scale membrane sequencing batch reactors (MSBRs) at various HRTs of 48, 24 and 16 h (with constant SRT) and in addition, at various SRTs of infinity, 40 and 10 d (with constant HRT). According to the obtained results, both zero and first-order kinetics were properly fitted the decolorization profiles of the selected azo dye in all of the applied HRTs and SRTs. Increase of both HRT and SRT positively affected the decolorization efficiency. More MLSS concentrations corresponded to the lower HRTs and the higher SRTs resulted in higher decolorization rate constants (k). However, the effect of reducing the HRT was not compensated by increase of the MLSS concentration in order to reach higher decolorization efficiency. In addition, increase of the decolorization efficiency, as a consequence of the higher MLSS concentrations at longer SRTs, was restrained by decrease of the time-limited decolorization capability of biomass (represented by normalized k). Evaluation of both k and normalized k is suggested in order to have a more precise study on the decolorization kinetics and characteristics.

Detection and Kinetics of Mucosal Pathogenic Bacteria Binding with Polysaccharides

  • Chung, Kyong-Hwan;Park, Jung-Soon;Hwang, Hyun-Soo;Kim, Jin-Chul;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1191-1197
    • /
    • 2007
  • The detection and kinetics of mucosal pathogenic bacteria binding on polysaccharide ligands were studied using a surface plasmon resonance biosensor. The kinetic model applied curve-fitting to the experimental surface plasmon resonance sensorgrams to evaluate the binding interactions. The kinetic parameters for the mucosal pathogenic bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens) with the alginate ligand were determined from a kinetic model. In addition, the binding interactions of the mucosal pathogenic bacteria with polysaccharide binding pairs (Pseudomonas aeruginosa/alginate, Streptococcus pneumoniae/pneumococcal polysaccharide, Staphylococcus aureus/pectin) were also compared with their kinetic parameters. The rate constants of association for Pseudomonas aeruginosa with the alginate ligand were higher than those for Pseudomonas fluorescens. Serratia marcescens had no detectable interaction with the alginate ligand. The adhesion affinity of Pseudomonas aeruginosa with alginate was higher than that for the other binding pairs. The binding affinities of the pathogenic bacteria with their own polysaccharide were higher than that of Staphylococcus aureus with pectin. Measuring the contact angle was found to be a feasible method for detecting binding interactions between analytes and ligands.