• Title/Summary/Keyword: Kinetics Analysis

Search Result 817, Processing Time 0.079 seconds

The Biomechanical Comparison of Running Shoes According to the Difference of Insole (인솔 차이에 따른 런닝화의 운동역학적 비교)

  • Jin, Young-Wan;Shin, Sung-Hwon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.51-59
    • /
    • 2007
  • These studies show that I applied to functional insole (a specific A company) for minimizing shocks and sprain people's ankle arising from running. How to an effect on human body which studied a kinematics and kinetics from 10 college students during experiments. This study imposes several conditions by barefoot, normal running shoes and put functional insole shoes ran under average $2.0{\pm}0.24\;m$/sec by motion analysis and ground reaction force that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee, initial sole angle and barefoot angle. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p<.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). Above experiment values known that there was statically difference between Motion analysis and Ground reaction force under absorbing of the functional insole shoes which was not have an effect on our body for kinetics and kinematics.

Effects of Al2O3 addition on nanocrystal formation and crystallization kinetics in (1-x)Li2B4O7-xAl2O3 glasses

  • Choi, Hyun Woo;Kim, Su Jae;Yang, Hang;Yang, Yong Suk;Rim, Young Hoon;Cho, Chae Ryong
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.63-68
    • /
    • 2019
  • We investigated the effects of Al2O3 addition on (1-x)Li2B4O7-xAl2O3 (LBAO; x = 0, 0.005, 0.01, 0.05, 0.07, and 0.1) glasses. The glasses were synthesized by a conventional melt-quench method. Structural transformations of the LBAO glasses were assessed via X-ray diffraction analysis. Estimations of ΔT, KGS = (Tc-Tg)/(Tm-Tc), activation energy, and the Avrami parameter were performed using differential thermal analysis and differential scanning calorimetry. An interpretation of non-isothermal kinetics of the crystallization process is presented using the modified Ozawa equation. The activation energy E increased from 3.3 to 3.5 eV for the LBAO (x < 0.01) glasses whereas those of the LBAO (x > 0.05) glasses slightly increased from 3.75 to 4.05 eV. The exponent n was estimated to be 3.9 ± 0.1 for the LBAO (x < 0.01) glasses and 3.2 ± 0.02 for the LBAO (x > 0.05) glasses. Microstructural characterization of the glassy and crystalline phases using atomic force microscopy was investigated. The effects of Al2O3 on the LBAO glasses include a decreased nucleation rate in the crystallization process and a significantly reduced crystal size.

Impact of Internal/External Diffusion on Gasification Reaction Rate Analysis of Coal Char in High Temperatures and Elevated pressures (고온/고압 조건에서의 석탄 촤 내부 및 외부 가스화 반응효과)

  • Kim, Gyeong-Min;Kim, Jin-Ho;Lisandy, Kevin Yohanes;Kim, Ryang-Gyoon;Kim, Gyu-Bo;Jeon, Chung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.23-29
    • /
    • 2016
  • Reactivity of gasification defined by bouardard reaction is critical parameter in efficiency of the gasifier. In this study, char reactivity of the gasification was derived from the experiments using the intrinsic reaction kinetics model. Pressurized wire mesh heating reactor (PWMR) can produce high temperature and high pressure conditions up to 50 atm and 1750 K, respectively and PWMR was designed to evaluate the intrinsic reaction kinetics of $CO_2$ gasification. In this study, Kideco and KCH (sub-bituminous Indonesian coal) were pulverized and converted into char. Experiments used the PWMR were conducted and the conditions of the temperature and pressure were 1373~1673 K, 1~40 atm. To distinguish the pressure effect from high pressurized condition, internal and external effectiveness factors were considered. Finally, the intrinsic kinetics of the Kideco and KCH coal char were derived from $n^{th}$ order reaction rate equations.

Retarding Retrogradation of Korean Rice Cakes(Karedduk) with a Mixture of Trehalose and Modified Starch Analyzed by Avrami Kinetics (Avrami Kinetics에 적용한 트레할로스와 변성 전분 혼합 사용 떡의 노화 억제 분석)

  • Kim, Sang-Sook;Chung, Hae-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • Retarding retrogradation of Korean rice cakes(Karedduk) with a mixture of trehalose and Sun-Tender added, after 0, 24, and 48 hr of storage at $5^{\circ}C$, was analyzed by Avrami kinetics. A central composite design was used for arrangement of treatment. The two independent variables selected for retarding retrogradation analysis were amounts of trehalose(x) and Sun-Tender(y). Trehalose was added at 0, 3, 6, 9, and 12% levels, and Sun-Tender added at 0, 0.3, 0.6, 0.9, and 1.2% levels, to dry rice flour. The Avrami exponent(n) for the mixtures of 9% trehalose and 0.3% Sun-Tender, and 9% trehalose and 0.9% Sun-Tender were lower than in the control. The time constant(1/k) for the mixture of trehalose and Sun-Tender was higher than in the control. The effect of retarding retrogradation of Korean rice cakes with added mixtures of trehalose and Sun-Tender showed an increasing trend as the amount of trehalose increased. These results suggest that adding a mixture of 9% trehalose and 0.3% Sun-Tender, or 9% trehalose and 0.9% Sun-Tender to Korean rice cakes(Karedduk) is effective for retarding retrogradation.

Cure Kinetics of amine-cured tetraglycidyl-4,4'-diaminodiphenylmethane epoxy blends with a new polyetherimide (반응성 열가소성 수지로 개질된 TGDDM/DDS 시스템의 Cure Kinetics)

  • Hwang Seungchul;Lee JungHoon;Kim Donghyon;Kim Woho;Kim Minyoung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.214-217
    • /
    • 2004
  • The cure kinetics of blends of epoxy(tetraglycidyl-4,4'-diaminodiphenylmethane ; TGDDM)/curing agent(diaminodiphenyl sulfone ; DDS) resin with amine terminated polyetherimide-CTBN-amine terminated polyetherimide triblock copolymer(ABA) were studied using differential scanning calorimetry under isothermal conditions to determine the reaction parameters such as activation energy and reaction constants. By increasing the amount of ABA in the blends, the final cure conversion was decreased. Lower values of the final cure conversions in the epoxy/ABA blends indicated that ABA hinders the cure reaction between the epoxy and curing agents. 1be value of the reaction order, m, for the initial autocatlytic reaction was not affected by blending ABA with epoxy resin, and the value was approximately 1.0. The value of n for the nth order component in the autocatalytic analysis was increased by increasing the amount of ABA in the blends, and the value increased from 2.0-3.4. A diffusion controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/DDS/ABA blends.

  • PDF

A new nano-ZnO/perlite as an efficient catalyst for catalytic ozonation of azo dye

  • Shokrollahzadeh, Soheila;Abassi, Masoud;Ranjbar, Maryam
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.513-520
    • /
    • 2019
  • In this investigation, nano ZnO was sonochemically synthesized by a novel method using a methionine precursor. A narrow size distribution (41-50 nm) of nano ZnO was achieved that was immobilized on perlite and applied as a catalyst in catalytic ozonation. The catalyst was characterized by fourier transform infrared spectroscopy, BET surface area, and field emission scanning electron microscope. The ozonation of recalcitrant Remazol black 5 (RB5) di-azo dye solution by means of the synthesized catalyst was investigated in a bubble column slurry reactor. The influence of pH values (7, 9, 11), catalyst dosage (8, 12, 15, $20g\;L^{-1}$) and reaction time (10, 20, 30, 60 min) was investigated. Although the dye color was completely removed by single ozonation at a higher reaction time, the applied nanocatalyst improved the dye declorination kinetics. Also, the degradation of the hazardous aromatic fraction of the dye was enhanced five-times by catalytic ozonation at a low reaction time (10 min) and a neutral pH. The second-order kinetics was best fitted in terms of both RB5 color and its aromatic fraction removal. The total organic carbon analysis indicated a significant improvement in the mineralization of RB5 by catalytic ozonation using the nano-ZnO/perlite catalyst.

Dynamic rod worth measurement method based on eqilibrium-kinetics status

  • Lee, Eun-Ki;Jo, YuGwon;Lee, Hwan-Soo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.781-789
    • /
    • 2022
  • KHNP had licensed Dynamic Control rod Reactivity Measurement (DCRM) method using detector current signals of PWRs in 2006. The method has been applied to all PWRs in Korea for about 15 years successfully. However, the original method was inapplicable to PWRs using low-sensitivity integral fission chamber as ex-core detectors because of their pulse pile-up and the nonlinearity of the mean-square voltage at low power region. Therefore, to overcome this disadvantage, a modified method, DCRM-EK, was developed using kinetics behavior after equilibrium condition where the pulse counts maintain the maximum value before pulse pile-up. Overall measurement, analysis procedure, and related computer codes were changed slightly to reflect the site test condition. The new method was applied to a total of 15 control rods of 1000 MWe and 1400 MWe PWRs in Korea with worths in the range of 200 pcm -1200 pcm. The results show the average difference of -0.4% and the maximum difference of 7.1% compared to the design values. Therefore, the new DCRM-EK will be applied to PWRs using low sensitivity integral fission chambers, and also can replace the original DCRM when the evaluation fails by big noises present in current or voltage signals of uncompensated/compensated ion chambers.