• Title/Summary/Keyword: Kinetic transesterification

Search Result 12, Processing Time 0.022 seconds

Transesterification Kinetics of Dimethyl Terephthalate with 1,4-Butanediol (디메틸테레프탈레이트와 1,4-부탄디올의 에스테르교환 반응 특성)

  • Cho, Impyo;Lee, Jinhong;Jo, Sanhwan;Cho, Minjung;Han, Myungwan;Kang, Kyungsuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.58-67
    • /
    • 2013
  • PBT (polybutylene terephthalate) has excellent mechanical properties such as low absorption, dimensional stability, abrasion resistance. It is used in manufacturing electronic components, the automobile part and the various precise parts. Bis (hydroxybutyl) terephthalate (BHBT) which is a PBT monomer, can be produced by transesterification reaction of DMT (dimethyl terephthalate) with 1,4-butandiol (BD). The kinetics of transesterification reaction of DMT with BD using zinc acetate as a catalyst was studied in a batch reactor. Previous kinetic studies was carried out in a semibatch reactor where generated methanol was removed so that reverse reactions were not considered in the kinetic expressions, resulting in inaccuracy of the kinetic model. Mathematical models of a batch reactor for the transesterification reaction were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. More accurate models than previous models was obtained and found to have a good agreement between model predictions and experimental data.

Transesterification of Dimethyl Terephthalate with Ethylene Glycol (Dimethyl terephthalate와 ethylene glycol의 에스테르 교환 반응)

  • Lee, Jinhong;Cho, Impyo;Jo, Sanhwan;Cho, Minjung;Han, Myungwan;Kang, Kyungsuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.144-150
    • /
    • 2013
  • The kinetics of the transesterification of dimethyl terephthalate (DMT) with ethylene glycol (EG) was studied in a batch reactor. Bishydroxyethyl terephthalate (BHET), which is poly(ethylene terephthalate) (PET) monomer, can be produced by the transesterification reaction. Zinc acetate was used as a catalyst. Previous kinetic studies was carried out in a semi-batch reactor where generated methanol was removed so that reverse reactions were not considered in the kinetic expressions, resulting in inaccuracy of the kinetic model. Mathematical models of a batch reactor for the tranesterification reaction were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. More accurate models than previous ones were obtained and found to have a good agreement between model predictions and experimental data. Effect of process variables on the esterification reaction was investigated based on the experimental and simulation results.

Non-thermal effects of microwaves and kinetics on the transesterification of soybean oil

  • Hsiao, Ming-Chien;Liao, Pei-Hung;Chang, Li-Wen
    • Advances in environmental research
    • /
    • v.1 no.3
    • /
    • pp.191-199
    • /
    • 2012
  • A kinetic study of the transesterification of soybean oil was conducted using microwaves under various temperatures, power densities, and reaction times. Results show that power density affects the kinetics and yield. The biodiesel yield increased with increasing microwave power density. The non-thermal effects of microwave irradiation on transesterification reactions were evaluated at a constant reaction temperature ($65^{\circ}C$) and power density (0.204 $Wg^{-1}$). Microwave irradiation was found to increase the reaction rates by 3.52-7.06 fold.

Transesterification of Dimethyl Terephthalate with Diethylene Glycol (Dimethyl terephthalate와 diethylene glycol의 에스테르 교환 반응)

  • Kim, Gunhyung;Cho, Minjeong;Jeon, Yeonghwan;Han, Myungwan;Kang, Kyungsuk
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.253-261
    • /
    • 2015
  • The kinetics of the transesterification of dimethyl terephthalate (DMT) with diethylene glycol (DEG) was studied in a batch reactor. bis-hydroxyethoxytethyl-terephthalate (BHEET), which is polyester polyol monomer, can be produced by the transesterification reaction. Zinc acetate was used as a catalyst. Previous kinetic studies was carried out in a semi-batch reactor where generated methanol was removed so that reverse reactions were not considered in the kinetic expressions, resulting in inaccuracy of the kinetic model. Mathematical models of a batch reactor for the tranesterification reaction, which took the reverse reaction into account, were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. More accurate models than previous ones were obtained and found to have a good agreement between model predictions and experimental data. Effect of process variables on the esterification reaction was investigated based on the experimental and simulation results.

Lipase/Ruthenium-Catalyzed Dynamic Kinetic Resolution of β-Hydroxyalkylferrocene Derivatives

  • Lee, Han-Ki;Ahn, Yang-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1471-1473
    • /
    • 2004
  • An efficient dynamic kinetic resolution of racemic ${\beta}$-hydroxyalkylferrocene and 1,1'-bis( ${\beta}$-hydroxyalkyl)-ferrocene derivatives was achieved using lipase/ruthenium-catalyzed transesterification in the presence of an acyl donor. The racemic ${\beta}$-hydroxyalkylferrocene derivatives were successfully transformed to the corresponding chiral acetates of high optical purities in high yields.

Production of Methyl Ester from Coconut Oil using Microwave: Kinetic of Transesterification Reaction using Heterogeneous CaO Catalyst

  • Mahfud, Mahfud;Suryanto, Andi;Qadariyah, Lailatul;Suprapto, Suprapto;Kusuma, Heri Septya
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.275-280
    • /
    • 2018
  • Methyl ester derived from coconut oil is very interesting to study since it contains free-fatty acid with chemical structure of medium carbon chain ($C_{12}-C_{14}$), so the methyl ester obtained from its part can be a biodiesel and another partially into biokerosene. The use of heterogeneous catalysts in the production of methyl ester requires severe conditions (high pressure and high temperature), while at low temperature and atmospheric conditions, yield of methyl ester is relatively very low. By using microwave irradiation trans-esterification reaction with heterogeneous catalysts, it is expected to be much faster and can give higher yields. Therefore, we studied the production of methyl ester from coconut oil using CaO catalyst assisted by microwave. Our aim was to find a kinetic model of methyl ester production through a transesterification process from coconut oil assisted by microwave using heterogeneous CaO catalyst. The experimental apparatus consisted of a batch reactor placed in a microwave oven equipped with a condenser, stirrer and temperature controllers. Batch process was conducted at atmospheric pressure with a variation of CaO catalyst concentration (0.5; 1.0; 1.5; 2.0, 2.5%) and microwave power (100, 264 and 400 W). In general, the production process of methyl esters by heterogeneous catalyst will obtain three layers, wherein the first layer is the product of methyl ester, the second layer is glycerol and the third layer is the catalyst. The experimental results show that the yield of methyl ester increases along with the increase of microwave power, catalyst concentration and reaction time. Kinetic model of methyl ester production can be represented by the following equation: $-r_{TG}=1.7{\cdot}10^6{_e}{\frac{-43.86}{RT}}C_{TG}$.

Kinetics of the KOH Catalyzed-Methanolysis for Biodiesel Production from Fat of Tra Catfish

  • Huong, Le Thi Thanh;Tan, Phan Minh;Hoa, Tran Thi Viet;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.418-428
    • /
    • 2008
  • Transesterification of fat of Tra catfish with methanol in the presence of the KOH catalyst yields fatty acid methyl esters (FAME) and glycerol (GL). The effects of the reaction temperature and reaction time on rate constants and kinetic order were investigated. Three regions were observed. In the initial stage, the immiscibility of the Tra fat and methanol limited the reaction rate, hence this region was controlled by the mass transfer. Subsequent to this region, produced FAME like a co-solvent made the reaction mixture homogeneous, therefore the conversion rate increased rapidly so it was controlled by the kinetic parameters of the reaction until the equilibrium was approached in the final slow region. A second-order kinetic mechanism was proposed involving second regions for the forward reaction. The rate determining step for the overall KOH catalyzed-methanolysis of Tra fat was the conversion of triglycerides (TG) to diglycerides (DG). This rate constant was increased from 0.003 to $0.019min^{-1}$ when the reaction temperature was increased from 35 to $60^{\circ}C$. Its calculated activation energy was 14.379 ($kcal.mol^{-1}$).

Kinetics and Optimization of Dimethyl Carbonate Synthesis by Transesterification using Design of Experiment

  • Lee, Kilwoo;Yoo, Kye Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.416-420
    • /
    • 2018
  • A comprehensive kinetic study has been conducted on dimethyl carbonate synthesis by transesterification reaction of ethylene carbonate with methanol. An alkali base metal (KOH) was used as catalyst in the synthesis of DMC, and its catalytic ability was investigated in terms of kinetics. The experiment was performed in a batch reactor at atmospheric pressure. The reaction orders, the activation energy and the rate constants were determined for both forward and backward reactions. The reaction order for forward and backward reactions was 0.87 and 2.15, and the activation energy was 12.73 and 29.28 kJ/mol, respectively. Using the general factor analysis in the design of experiments, we analyzed the main effects and interactions according to the MeOH/EC, reaction temperature and KOH concentration. DMC yield with various reaction conditions was presented for all ranges using surface and contour plot. Furthermore, the optimal conditions for DMC yield were determined using response surface method.

The Kinetics of Transesterification between Dimethylterephthalate and 1,3-Propanediol (디메틸 테레프탈레이트와 1,3-프로판디올 사이의 에스테르교환반응에 관한 연구)

  • Na, Sang-Kuwon;Kong, Byeong-Gi;Choi, Chang-Yong;Kim, Jung-Gyu;Hong, Wan-Hae;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2005
  • The transesterification of dimethyl terephthalate (DMT) with 1,3-propanediol (PDO) was investigated in the presence of catalyst, titanium (IV) butoxide (TBO), at 175~190 $^{\circ}C$ . The degree of transesterification reaction was measured by the output of methanol which was distilled from the reactor. The amount of methanol increased as the reaction temperature, molar ratio and catalyst concentration increased. The observed overall rate of the transesterification was third order; first order with respect to DMT, PDO, and the concentration of catalyst, respectively. Using calculated rate constants, the activation energy for transesterification was 26.93 kcal/mole. The melting temperature of bis(2-hydroxytrimethyl) terephthalate (BHTMT) was 85.2$^{\circ}C$ and heat of fusion 141.3 J/g.