• Title/Summary/Keyword: Kinetic stability

Search Result 242, Processing Time 0.021 seconds

Stability limits of premixed microflames at elevated temperatures (고온에서의 예혼합 초소형 화염의 연소안정한계 연구)

  • Kim, Ki-Baek;Lee, Kyoung-Ho;Hong, Young-Taek;Kwon, Oh-Chae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.158-165
    • /
    • 2006
  • In order to provide the database for designing microcombustors, the combustion characteristics of premixed methane and propane air microflames at normal and elevated temperatures and atmospheric pressure generated on a microtube were studied experimentally and computationally. The stability limits of premixed microflames and the propensity of the microflames near the stability limits were experimentally determined, while the structure of the microflame at the fuel-leanest limit was obtained using a two-dimensional CFD simulation with a reduced kinetic mechanism. For all the microflames, the stability limits were observed only in the fuel-rich region. Results also show substantial extension of stability limits with elevated temperature that is realistic condition for micro fuel processing and significant fuel dilution immediately near the tube exit due to a low Peclet number times Lewis number effect.

A Study on the Stability of Carbamide Peroxide Solution (Carbamide Peroxide 용액(溶液)의 안정성(安定性))

  • Rhee, Gye-Ju;Yu, Byung-Sul
    • YAKHAK HOEJI
    • /
    • v.28 no.6
    • /
    • pp.299-303
    • /
    • 1984
  • In order to eluciate the effect of humidity and organic solvent on the decomposition of carbamide peroxide, the kinetic study was carried out. The carbamide peroxide was prepared from urea and 30%-hydrogen peroxide. The accelerated stability analysis for carbamide peroxide crystal in various relative humidity, and for 10%-carbamide peroxide solution of organic solvents were investigated. Both humidity and temperature were important factors influencing the decomposition rate of carbamide peroxide crystal. The higher the humidity and temperature, the greater was the reaction rate. The breakdown rate of crystal was observed as an apparent zero-order, and was faster than the rate of decomposition in dilute propylene glycol, glycerine or sorbitol solutioos which were measured as an apparent first-order reaction. The more dilute to 10% the organic solvents of 10%-carbamide peroxide, the slower was breakdown rate. It is, therefore, useful in the aspects of stability and economics to substitute solvent of carbamide peroxide topical solution (USP XXI) with 10%-propylene glycol or glycerine instead of anhydrous glycerine.

  • PDF

Copper chelation chemistry with various chelators for radiopharmaceuticals

  • Kim, Chul Hee;Kim, Dong Wook
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.129-134
    • /
    • 2019
  • Over a few decades, copper radioisotopes and their chelation chemistry for radiopharmaceuticals have played crucial role in the radiopharmaceutical science area. A variety of chelators have been required for their stable targeting ability in physiological conditions. For radiolabeling with copper-64 into biomolecules, thermodynamic stability, kinetic inertness, pH stability, and redox stability should be considered. In this regard, many researchers have attempted to develop the chelators that can bind with copper more tightly, rapidly and stably for copper radiolabeling. This review discusses the chemistry of copper, its suitable chelators and characteristics, while elucidating the evaluations of each chelator for radiolabeling.

A Study of Thermal Properties of LDPE-Nanoclay Composite Films

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • This work focused on the study of thermal properties and kinetic behavior of LDPE-nanoclay composite films. The effect of nanoclay content (0.5, 1, 3, and 5 wt%) on thermal stability and crystallization characteristics of the nanocomposites were investigated by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results from endothermic curve showed that the nanoclay played an important role in the crystallization of nanocomposites by acting as nucleating agent. From exothermic curve, there was a crystallization temperature shift which was attributed to crystallization process induced by nanoclay. The TGA results showed that the addition of nanoclay significantly increased the thermal stability of LDPE matrix, which was likely due to the characteristic of layered silicates/clays dispersed in LDPE matrix as well as the formation of multilayered carbonaceous-silicate char. A well-known Coats-Redfern method was used to evaluate the decomposition activation energy of nanocomposite. It was demonstrated that introducing of nanoclay to LDPE matrix escalated the activation energy of nanocomposite decomposition resulting in thermal stability improvement.

Analysis of Stability on Single-leg Standing by Wearing a Head Mounted Display

  • Woo, Byung Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the effects of three visual conditions (eyes opened, eyes closed, and wearing of a head mounted display [HMD]) on single-leg standing through kinematics and kinetic analysis. Method: Twelve college students (age: $24.5{\pm}2.6years$, height: $175.0{\pm}6.4cm$, weight: $69.2{\pm}5.1kg$) participated in this study. The study method adopted three-dimensional analysis with six cameras and ground reaction force measurement with one force plate. The analysis variables were coefficient of variation (CV) of the center of body mass, head movement, ground reaction force, and center of pressure, which were analyzed using one-way analysis of variance with repeated measures according to visual conditions. Results: In most cases, the results of this study showed that the CV was significantly higher in the order of HMD wearing, eyes closed, and eyes opened conditions. Conclusion: Our results indicated that body sway was the largest in the HMD wearing condition, and the risk of falling was high owing to the low stability.

General Theory for Free Vibration and Stability Analysis of Thin-walled Space Beam-Columns and Frames (박벽 공간 보-기둥과 뼈대구조의 자유진동 및 안정성 해석을 위한 일반이론)

  • 김성보;구봉근;한상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.239-246
    • /
    • 1997
  • The general formulation of free vibration and stability analysis of unsymmetric thin-walled space frames and beam-columns is presented. The kinetic and total potential energy is derived by applying the extended virtual work principle, introducing displacement parameters defined at the arbitrarily chosen axis and including second order terms of finite semitangential rotations. In formulating the finite element procedure, cubic Hermitian polynomials are utilized as shape functions of the two node space frame element. Mass, elastic stiffness, and geometric stiffness matrices for the unsymmetric thin-walled section are evaluated. In order to illustrate the accuracy and practical usefulness of this formulation, finite element solutions for the free vibration and stability problems of thin-walled beam-columns and space frames are presented and compared with available solutions.

  • PDF

The Stability of Piroxicam in Propylene Glycol (프로필렌글리콜에서의 피록시캄의 안정성)

  • Shin, Young-Shin;Shin, Young-Hee;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.203-208
    • /
    • 1988
  • The stability and solubility of piroxicam in propylene glycol (PG), polyethylene glycol (PEC), and PG-water cosolvents have been studied by using high performance liquid chromatography. The degradation rate followed an apparent first-order kinetic and the reaction rate constants at 70, 80, and $90^{circ}C$ were determined. From these rate constants, the activation energy and the rate constant of piroxicam at $25^{circ}C$ in pure PG calculated by Arrhenius equation were 23.34 kcal/mole and $7.0\;{\times}\;10^{-4}\;day^{-1}$, respectively. Both of PG and PEG increased the solubility of the drug, but PEG was more effective.

  • PDF

Linear Stability Analysis of Cellular Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 셀모양 대향류 확산화염의 선형 안정성 해석)

  • Lee, Su Ryong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.42-50
    • /
    • 2013
  • Linear stability analysis of radiating counterflow diffusion flames is numerically conducted to examine the instability characteristics of cellular patterns. Lewis number is assumed to be 0.5 to consider diffusional-thermal instability. Near kinetic limit extinction regime, growth rates of disturbances always have real eigen-values and neutral stability condition of planar disturbances perfectly falls into quasi-steady extinction. Cellular instability of disturbance with transverse direction occurs just before steady extinction. However, near radiative limit extinction regime, the eigenvalues are complex and pulsating instability of planar disturbances appears prior to steady extinction. Cellular instability occurs before the onset of planar pulsating instability, which means the extension of flammability.

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.

Determination of Critical Generator Group Using Accelerating Power and Synchronizing Power Coefficient in the Transient Energy Function Method

  • Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • This paper proposes an algorithm for determining critical generator lists using accelerating power and synchronizing power coefficient (SPC), and critical generator group (CGG) from CGG candidates, which is a combination of critical generators. The accurate determination of CGG provides a more accurate energy margin while providing system operator with information of possible unstable generator group. Classical transient energy function (TEF) method selects the critical generators with big corrected kinetic energy of each generator at the moment of fault removal. However, the generator with small acceleration after fault, that is, the generator with small corrected kinetic energy, is also likely to belong to CGG if the generator has small synchronizing power. The proposed algorithm has been verified to be effective compared with the classical TEF method. We utilized the power system of Korean Electric Power Corporation(KEPCO) as a test system.