• Title/Summary/Keyword: Kinetic stability

Search Result 243, Processing Time 0.025 seconds

Redundancy Trajectory Generation for Biped Robot Manipulators (2족 보행로봇을 위한 여유자유도 궤적 생성)

  • Yeon, Je-Sung;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1014-1022
    • /
    • 2009
  • A biped robot in locomotion can be regarded to be kinetically redundant in that the link-chain from its foot on the ground to its swing foot has more degrees of freedom that needed to realize stable bipedal locomotion. This paper proposes a new method to generate a trajectory for bipedal locomotion based on this redundancy, which directly generates a locomotion trajectory at the joint level unlike some other methods such as LIPM (linear inverted-pendulum mode) and GCIPM (gravity-compensated inverted-pendulum mode), each of which generates a trajectory of the center of gravity or the hip link under the assumption of the dominance of the hip-link inertia before generating the trajectory of the whole links at the joint level. For the stability of the trajectory generated in the proposed method, a stability condition based on the ZMP (zero-moment point) is used as a constraint as well as other kinetic constraints for bipedal motions. A 6-DOF biped robot is used to show how a stable locomotion trajectory can be generated in the sagittal plane by the proposed method and to demonstrate the feasibility of the proposed method.

Estimation and Sensitivity Analysis of Kinetic Parameters for Plasmid Stability in Continuous Culture of a Recombinant Escherichia coli Harboring trp-operon Plasmid

  • NAM, SOO WAN;BYUNG KWAN KIM;JUNG HOE KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1994
  • A model equation to describe the plasmid instability in recombinant Escherichia coli fermentation is proposed. The equation allows one to estimate easily the two model parameters; (1) the difference in the specific growth rates between plasmid-free cells and plasmid-harboring cells ($\delta$), and (2) the probability of plasmid loss by plasmid-harboring cells ($\rho$). The estimated values of $\delta and \rho$ were in the range of 0.02-0.07 and $10^{-3}-10^{-5}$, respectively, and were strongly dependent on the dilution rate. As another parameter, the ratio of specific growth rates of plasmid-free cells and plasmid-harboring cells ($\alha$) was calculated and the result showed the highest value of 1.28 at the lowest dilution rate of 0.075 $hr^{-l}$, examined in this work. By the sensitivity analyses on the estimates of $\delta and \rho$, it was found that the growth rate difference ($\delta$) affected the plasmid instability more seriously than the probability of plasmid loss ($\rho$). Furthermore, the profound instability of plasmid at low dilution rate could be explained by the high values of $\alpha and \rho$.

  • PDF

Optimum Design of Vehicle Powertrain Mounting System (자동차용 파워트레인 마운팅 시스템의 최적설계)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • Technology of vehicle industry has been developing and it is required a better vehicle performance than before. Therefore, the consumers are asking not only an economic efficiency, functionality, polished design, ride comfort and silence but also a driving stability. The ride comfort, silence and driving stability are influenced by the size of vehicle and various facilities. But the principal factor is a room noise and vibration sensed by a driver and passenger. Thus, the NVH of vehicle has been raised and used as a principal factor for evaluation of vehicle performance. The primary objective of this study is an optimized design of powertrain mounting system. To optimized design was applied MSC.Nastran optimization modules. Results of dynamic analysis for powertrain mounting system was investigated. By theses results, design variables was applied 12 dynamic spring constant. And the weighting factor according to translational displacement and rotational displacement applied 3 cases. The objective function was applied to minimize displacement of powertrain. And the design variable constraint was imposed dynamic spring constant ratio. The constraint of design variable for objective function was imposed bounce displacement for powertrain.

Development of Modified Phenylalanine Ammonia-lyase for the Treatment of Phenylketonuria

  • Kim, Woo-Mi
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.104-110
    • /
    • 2009
  • Phenylketonuria (PKU) is an inherited metabolic disorder caused by mutations in the phenylalanine catabolic enzyme, phenylalanine hydroxylase (PAH). The use of phenylalanine ammonia-lase (PAL) by oral and parenteral routes as a therapeutic drug for PKU has been severely limited due to inactivation by intestinal proteolysis and immune reactions. PEGylation was applied to PAL to reduce the degrees of antigenicity and proteolytic inactivation. Kinetic experiments with native PAL and pegylated PALs were performed, and pH stability, temperature stability, and protease susceptibility were evaluated. Enzyme linked immunosorbent assay (ELISA) was carried out to measure the immune complex between pegylated PALs and antiserum that had been extracted from a PAL-immunized mouse. Pegylated PAL, especially branched pegylated PAL (10 kDa, 1:32), was more active for phenylalanine and more stable in pancreatic proteases than native PAL. Native PAL was optimal at pH 8.5, corresponding to the average pH range of the small intestine; the same finding was noted for pegylated PALs. All linear and branched pegylated PALs had low reactivity with mouse antiserum, especially the 1:16 formulation with linear 5-kDa PEG and the 1:32 formulation with branched 10-kDa PEG. Therefore, we suggest the 1:32 formulation with branched 10-kDa PEG as the most promising formulation for enzyme replacement therapy.

Thermal Stress Analysis for a Brake Disk considering Pressure Distribution at a Frictional Surface (마찰면의 압력 분포를 고려한 제동디스크의 열응력 해석)

  • Lee Y.M.;Park J.S.;Seok C.S.;Lee C.W.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.842-846
    • /
    • 2005
  • A brake disk and a pad are important parts that affect the braking stability of a railway vehicle. Especially, because a brake disk stops the vehicle using conversion of the kinetic energy to frictional energy, thermal fatigue cracks are generated by the cyclic thermal load, as frictional heat, on a frictional surface and these cracks cause the fracture of a brake disk. Therefore, many researches for the thermal stress must be performed to improve the efficiency of brake disk and ensure the braking stability. In this study, we performed the thermal stress analysis for a ventilated brake disk with 3-D analysis model. For that, we simplified the shape of a ventilated hole to minimize problems that could be occurred in analysis process. Thermal stress analysis was performed in case that pressure distributions on a frictional surface is constant and is not. To determine pressure distributions of irregular case, pressure distribution analysis for a frictional surface was carried out. Finally using the results that were obtained through pressure distribution analysis, we carried out thermal stress analysis of each case and investigated the results of thermal stress analysis.

  • PDF

A Separation of manganese (II) and cobalt (II) ions by D2EHPA/TBP-immobilized PolyHIPE membrane

  • Chen, Jyh-Herng;Mai, Le Thi Tuyet
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • The D2EHPA/TBP co-extractants immobilized PolyHIPE membrane can be used for the selective separation of Mn (II) from Co (II). By solvent-nonsolvent method, D2EHPA/TBP co-extractants can be effectively immobilized into PolyHIPE membrane. The pore structure of PolyHIPE membrane and the presence of TBP enhance the stability of immobilized co-extractants. The optimal operating conditions for the separation of Mn (II) and Co (II) are feeding phase at pH 5.5, sulfuric acid concentration in the stripping phase of about 50 g/L and stirring speed at 400 rpm. The D2EHPA/TBP co-extractants ratio of 5:1 shows synergetic effect on Mn/Co separation factor about 22.74. The removal rate and recovery rate of Mn (II) is about 98.4 and 97.1%, respectively, while for Co (II) the transport efficiency is insignificant. The kinetic study of Mn (II) transport shows that high initial flux, $J_f^o=80.1({\mu}mol/m^2s)$, and maxima stripping flux, $J_s^{max}=20.8({\mu}mol/m^2s)$, can be achieved with D2EHPA/TBP co-extractants immobilized PolyHIPE membrane. The stability and reusability study shows that the membrane can maintain a long term performance with high efficiency. High purity of Co (II) and Mn (II) can be recovered from the feeding phase and stripping phase, respectively.

A Numerical Analysis on the Flow Characteristics of Polar Cavity (폴라캐비티(Polar Cavity)의 유동특성에 관한 수치해석)

  • 김진구;조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.127-133
    • /
    • 2000
  • A numerical study of the flow of incompressible fluid in a polar cavity is presented. Irregular grids is proposed by applying the interior division principle to the variables on polar coordinate grid formation. Stability analysis and the pressure correction method of SOLA algorithms were discussed in detail on cylindrical coordinates. The results present that unsteady flow behavior appears over $Re=3{\times}10^4$ on polar cavities but nearly steady state at $Re=10^4$. Furthermore, with increasing Reynolds numbers, vortices behaviors indicate more complicated flow phenomena and more severe temporal fluctuation of total kinetic energy and time variation of velocity components at arbitrary pick-up points are detected in case of $Re=5{\times}10^4$.

  • PDF

The Prediction of Brake Corner Module Squeal Noise Using Participation Factor Analysis (기여도 분석법을 이용한 자동차 브레이크 시스템의 스퀼 소음 예측)

  • Lee, Jong-Ghi;Lim, Hyun-Seok;Kim, Hee-Yong;Baek, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1074-1080
    • /
    • 2009
  • A method for determining the geometric stability characteristics of a brake corner module (BCM) is presented. Since disc brake "squeal" noise typically occurs at unstable resonant frequencies of a system, the likelihood of disc brake squeal for a particular design can be determined. Finite element methods are used to derive complex eigenvalue for a brake corner module. Some unstable modes calculated by finite element methods correspond to squeal noise data. Through kinetic energy participation analysis for each part of BCM, we can efficiently predict squeal noise data.

Studies on the Response of Photobacterium phosphoreum to the Volatile Substances (휘발성 물질에 대한 Photobacterium phosphoreum의 Bioluminescence의 변화)

  • 이은수;이용제;김은기;이정건;전억한
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.484-490
    • /
    • 1999
  • Various materials including sodium alginate, k-carrageenan, collagen and polyacrylamide were studied in order to maintain the stability of bioluminescence of Photobacterium for the monitoring of volatile toxic substances. Kinetic parameters of specific rate($\mu$), and gamma(${\gamma}$) value were determined for the relationship between bioluminescence of immobilized P. phosphoreum and toxic substances. The bioluminescence intensity was found to be proportional to the concentration of toxic substances and the free cells were shown to be more sensitive than immobilized cells when volatile substances were exposed to the cells. Bioluminescence increased slightly after several minutes, which was due to the volatility of toxic compounds. Furthermore, P. phosphoreum immobilized on strontium alginate was better than cells immobilized on sodium alginate for the response to substances used.

  • PDF

Analysis of the two dimensional sheet debris flight equations: initial and final state

  • Scarabino, A.;Giacopinelli, P.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.109-125
    • /
    • 2010
  • This work presents some analytical and numerical results of a dynamic analysis of the dimensionless 2-D sheet flight equations. Two empirical models for aerodynamic forces and moments are used and compared. Results show that the initial condition of rest is always unstable, and for long times three distinct flight regimes are possible, depending on the initial angle of attack, the Tachikawa number, Ta (in fact, the parameter chosen was its inverse, ${\Omega}$), and a mass ratio ${\Phi}$. The final orbits in the velocity space and their maximum kinetic energy are compared with a theoretical asymptotic state of the motion equations, and some design considerations are proposed.