• 제목/요약/키워드: Kinetic solvent isotope effect

검색결과 41건 처리시간 0.02초

Solvolyses of N-Methyl-N-phenylcarbamoyl Chlorides with Electron Acceptor Substituents in A Queous Binary Mixtures

  • 구인선;안선경;양깅열;고한중;최문호;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권8호
    • /
    • pp.842-846
    • /
    • 2001
  • Solvolyses of N-methyl-N-phenylcarbamoyl chlorides in aqueous binary mixtures of acetone, ethanol, methanol and in water, D2O, and 50% D2O-CH3OD are investigated at 25.0 $^{\circ}C.$ The Grunwald-Winstein plots of first-ord er rate constants for N-methyl-N-phenylcarbamoyl chlorides with YCl (based on 2-adamantyl chloride) show a dispersion phenomenon. The ring parameter (I) has been shown to give considerable improvement when it is added as an hI term to the original Grunwald-Winstein and extended Grunwald-Winstein correlations for the solvolyses of N-methyl-N-phenylcarbamoyl chlorides. This study has shown that the magnitude of l, m and h values associated with a change of solvent composition is able to predict the dissociative SN2 transition state. The kinetic solvent isotope effects determined in deuterated water are consistent with the proposed mechanism of the general base catalyzed and/or a dissociative SN2 mechanism channel for N-methyl-N-phenylcarbamoyl chlorides solvolyses.

Stoichiometric Effects. Correlation of the Rates of Solvolysis of Isopropenyl Chloroformate

  • Ryu, Zoon-Ha;Lee, Young-Ho;Oh, Yung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1761-1766
    • /
    • 2005
  • Solvolysis rates of isopropenyl chloroformate (3) in water, $D_2O$, $CH_3OD$ and in aqueous methanol, ethanol, 2,2,2-trifluoroethanol (TFE), acetone, 1,4-dioxane as well as TFE-ethanol at 10 ${^{\circ}C}$ are reported. Additional kinetic data for pure water, pure ethanol and 80%(w/w) 2,2,2-trifuoroethanol (T)-water (W) at various temperatures are also reported. These rates show the phenomena of maximum rates in specific solvents (30% (v/v) methanol-water and 20% (v/v) ethanol-water) and, variations in relative rates are small in aqueous alcohols. The kinetic data are analyzed in terms of GW correlations, steric effect, kinetic solvent isotope effects (KSIE), and a third order model based on general base catalysis (GBC). Solvolyses based on predominately stoichiometric solvation effect relative to medium solvation are proceeding in 3 and the results are remarkably similar to those for p-nitrobenzoyl chloride (4) in mechanism and reactivity.

Rate and Product Studies of 1-Adamantylmethyl Haloformates Under Solvolytic Conditions

  • Park, Kyoung-Ho;Lee, Yelin;Lee, Yong-Woo;Kyong, Jin Burm;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3657-3664
    • /
    • 2012
  • Reactions of 1-adamantylmethyl chloroformate ($1-AdCH_2OCOCl$, 1) and 1-adamantylmethyl fluoroformate ($1-AdCH_2OCOF$, 2) in hydroxylic solvents have been studied. Application of the extended Grunwald-Winstein (G-W) equation to solvolyses of 1 in a variety of pure and binary solvents indicates an addition-elimination pathway in the majority of the solvents except an ionization pathway in the solvents of relatively low nucleophilcity and high ionizing power. The solvolyses of 2 show an addition-elimination pathway in all of the mixed solvents. The leaving group effects ($k_F/k_{Cl}$), the kinetic solvent isotope effects (KSIEs, $k_{MeOH}/k_{MeOD}$), and the enthalpy and entropy of activation for the solvolyses of 1 and 2 were also calculated. The selectivity values (S) for each solvent composition are reported and discussed. These observations are compared with those previously reported for other alkyl haloformate esters.

Limitations of the Transition State Variation Model. Part 8. Dual Reaction Channels for Solvolyses of 3,4-Dimethoxybenzenesulfonyl Chloride

  • Koo, In-Sun;Kwon, Eun-Ju;Choi, Ho-June;Yang, Ki-Yull;Park, Jong-Keun;Lee, Jong-Pal;Lee, Ikc-Hoon;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2377-2381
    • /
    • 2007
  • Solvolyses of 3,4-dimethoxybenzenesulfonyl chloride (DSC) in water, D2O, CH3OD, and in aqueous binary mixtures of acetone, acetonitrile, 1,4-dioxane, ethanol, methanol, and 2,2,2-trifluoroethanol (TFE) have been investigated at 25.0 oC. Kinetic solvent isotope effects (KSIE) in water and in methanol and product selectivities in alcohol-water mixtures are also reported. The Grunwald-Winstein plot of first-order rate constants for the solvolyic reaction of DSC with YCl shows marked dispersions into separated lines for various aqueous mixtures. With use of the extended Grunwald-Winstein equation, the l and m values obtained are 1.12 and 0.58 respectively for the solvolyses of DSC. The relatively large magnitude of l is consistent with substantial nucleophilic solvent assistance. From Grunwald-Winstein plots the rate data are dissected approximately into contributions from two competing reaction channels. This interpretation is supported for alcohol-water mixtures by the trends of product selectivities, which show a maximum for ethanol-water mixtures. From the KSIE of 1.45 in methanol, it is proposed that the reaction channel favored in methanolwater mixtures and in all less polar media is general-base catalysed and/or is possibly (but less likely) an addition-elimination pathway. Also, the KISE value of 1.35 for DSC in water is expected for SN2-SN1 processes, with minimal general base catalysis, and this mechanism is proposed for solvolyses in the most polar media.

Solvent Effect on the Nature of the Metallamacrocycles Formed: Formation of Octanuclear and Dodecanuclear Manganese Metalladiazamacrocycles

  • John, Rohith P.;Lee, Kyung-Jin;Lee, Kyung-Jae;Park, Mi-Ra;Lah, Myoung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.2009-2014
    • /
    • 2007
  • The aminolysis of diphenyl thiophosphinic chloride (2) with substituted anilines in acetonitrile at 55.0 oC is investigated kinetically. Kinetic results yield large Hammett ρX (ρnuc = ?3.97) and Bronsted βX (βnuc = 1.40) values. A concerted mechanism involving a partial frontside nucleophilic attack through a hydrogen-bonded, four-center type transition state is proposed on the basis of the primary normal kinetic isotope effects (kH/kD = 1.0-1.1) with deuterated aniline (XC6H4ND2) nucleophiles. The natural bond order charges on P and the degrees of distortion of 42 compounds: chlorophosphates [(R1O)(R2O)P(=O)Cl], chlorothiophosphates [(R1O)(R2O)P(=S)Cl], phosphonochloridates [(R1O)R2P(=O)Cl], phosphonochlorothioates [(R1O)R2P(=S)Cl], chlorophosphinates [R1R2P(=O)Cl], and chlorothiophosphinates [R1R2P(=S)Cl] are calculated at the B3LYP/ 6-311+G(d,p) level in the gas phase.

Kinetics and Mechanism of the Anilinolysis of Ethylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4185-4190
    • /
    • 2011
  • The nucleophilic substitution reactions of ethylene phosphorochloridate (1c) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 1c involving a cyclic five-membered ring is four thousand times faster than its acyclic counterpart (1a: diethyl chlorophosphate) because of great positive value of the entropy of activation of 1c (${\Delta}S^{\neq}=+30\;cal\;mol^{-1}K^{-1}$ compared to negative value of 1a (${\Delta}S^{\neq}=-45\;cal\;mol^{-1}K^{-1}$) over considerably unfavorable enthalpy of activation of 1c (${\Delta}H^{\neq}=27.7\;kcal\;mol^{-1}$) compared to 1a (${\Delta}H^{\neq}=8.3\;kcal\;mol^{-1}$). Great enthalpy and positive entropy of activation are ascribed to sterically congested transition state (TS) and solvent structure breaking in the TS. The free energy correlations exhibit biphasic concave upwards for substituent X variations in the X-anilines with a break point at X = 3-Me. The deuterium kinetic isotope effects are secondary inverse ($k_H/k_D$ < 1) with the strongly basic anilines and primary normal ($k_H/k_D$ > 1) with the weakly basic anilines and rationalized by the TS variation from a dominant backside attack to a dominant frontside attack, respectively. A concerted $S_N2$ mechanism is proposed and the primary normal deuterium kinetic isotope effects are substantiated by a hydrogen bonded, four-center-type TS.

Marked Difference in Solvation Effects and Mechanism between Solvolyses of Substituted Acetylchloride with Alkyl Groups and with Aromatic Rigns in Aqueous Fluorinated Alcohol and in 2,2,2-Trifluoroethanol-Ethanol Solvent Systems

  • Oh, Yung-Hee;Jang, Gyeong-Gu;Lim, Gyi-Taek;Ryu, Zoon-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1089-1096
    • /
    • 2002
  • Solvolyses rate constants of trimethylacetyl chloride (2), isobutyryl chloride (3), diphenylacetyl chloride (4) and p-methoxyphenylacetyl chloride (5) in 2,2,2-trifluoroethanol (TFE)-water, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-water and TFE-et hanol solvent systems at $10^{\circ}C$ are determined by a conductimetric method. Kinetic solvent isotope effects (KSIE) are reported from additional kinetic data for methanolyses of various substituted acetylchlorides in methanol According to the results of those reactions analyzed in terms of rate-rate profiles,extended Grunwald-Winstein type correlations, application of a third order reaction model based a general base catalyzed (GBC) and KSIE values. Regardless of the kind of neighboring groups (CH3- or Ph-groups) of reaction center, for aqueous fluorinated alcohol systems, solvolyses of 2, 3, 4, and 5 were exposed to the reaction with the same mechanism (a loose SN2 type mechanism by electrophilic solvation) controlled by a similarity of solvation of the transition sate (TS). Whereas, for TFE-ethanol solvent systems, the reactivity depended on whether substituted acetyl chloride have aromatic rings (Ph-) or alkyl groups (CH3-); the solvations by the predominant stoichiometric effect (third order reaction mechanism by GBC and/or by push-pull type) for Ph- groups (4 and 5) and the same solvation effects as those shown in TFE-water solvent systems for CH3- groups (2 and 3) were exhibited Such phenomena can be interpreted as having relevance to the inductive effect ( $\sigmaI)$ of substituted groups; the plot of log (KSIE) vs. ${\sigma}I$ parameter give an acceptable the linear correlation with r = 0.970 (slope = 0.44 $\pm$ 0.06, n = 5).

Kinetics and Mechanism of the Anilinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl -5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.1037-1041
    • /
    • 2012
  • The nucleophilic substitution reactions of (2R,4R,5S)-(+)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 3 involving a cyclic five-membered ring is considerably fast because of small negative value of the entropy of activation (${\Delta}S^\neq=-2cal\;mol^{-1}\;K^{-1}$) over considerably unfavorable enthalpy of activation (${\Delta}H^\neq=18.0\;kcal\;mol^{-1}$). Great enthalpy and small negative entropy of activation are ascribed to sterically congested transition state (TS) and bulk solvent structure breaking in the TS. A concerted $S_N2$ mechanism with a backside nucleophilic attack is proposed on the basis of the secondary inverse deuterium kinetic isotope effects, $k_H/k_D$ < 1.

Stoichiometric Solvation Effects. Part 4. Product-Rat Correlations for Solvolyses of p-Methoxyphenyl Chloroformate in Alcohol-Water Mixtures

  • 구인선;양기열;구자찰;박종근;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.1017-1021
    • /
    • 1997
  • Solvolyses of p-methoxyphenyl chloroformate in water, D2O, CH3OD, 50% D2O-CH3OD, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25.0 ℃. Product selectivities are reported at 25 ℃ for a wide range of ethanol-water and methanol-water solvent compositions. The Grunwald-Winstein plots of first-order rate constants for p-methoxyphenyl chloroformate with YCl (based on 1-adamantyl chloride) show marked dispersions into three separate curves for the three aqueous mixtures with a small m value and a rate maximum for aqueous alcohol solvents. Third-order rate constants, kww, kaw, kwa and kaa were calculated from the observed kww and kaa values together with kaw and kwa calculated from the intercept and slope of the plot of 1/S vs. [alcohol]/[water]. The calculated rate constants, kcalc and mol % of ester agree satisfactorily with those of the observed rate constants, kobs and mol % of ester, supporting the stoichiometric solvation effect analysis. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed carbonyl addition-elimination.

Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure

  • Kim, Song-I;Hwang, So-Jeong;Park, Yoon-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1199-1203
    • /
    • 2010
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for Michael-type reactions of 1-(X-substituted phenyl)-2-propyn-1-ones (2a-f) with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ value increases as the incoming amine becomes more basic and the substituent X changes form an electron-donating group (EDG) to an electron-withdrawing group (EWG). The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}$ = 0.48 - 0.51. The Hammett plots for the reactions of 2a-f exhibit poor correlations but the corresponding Yukawa-Tsuno plots result in much better linear correlations with ${\rho}$ = 1.57 and r = 0.46 for the reactions with piperidine while ${\rho}$ = 1.72 and r = 0.39 for those with morpholine. The amines employed in this study are less reactive in MeCN than in water for reactions with substrates possessing an EDG, although they are ca. 8 pKa units more basic in the aprotic solvent. This indicates that the transition state (TS) is significantly more destabilized than the ground state (GS) in the aprotic solvent. It has been concluded that the reactions proceed through a stepwise mechanism with a partially charged TS, since such TS would be destabilized in the aprotic solvent due to the electronic repulsion between the negative-dipole end of MeCN and the negative charge of the TS. The fact that primary deuterium kinetic effect is absent supports a stepwise mechanism in which proton transfer occurs after the rate-determining step.