• Title/Summary/Keyword: Kinetic properties

Search Result 523, Processing Time 0.024 seconds

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

Mass transfer kinetics using two-site interface model for removal of Cr(VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents

  • Vasudevan, M.;Ajithkumar, P.S.;Singh, R.P.;Natarajan, N.
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.152-163
    • /
    • 2016
  • Present study investigates the potential of cassava peel and rubber tree bark for the removal of Cr (VI) from aqueous solution. Removal efficiency of more than 99% was obtained during the kinetic adsorption experiments with dosage of 3.5 g/L for cassava peel and 8 g/L for rubber tree bark. By comparing popular isotherm models and kinetic models for evaluating the kinetics of mass transfer, it was observed that Redlich-Peterson model and Langmuir model fitted well ($R^2$ > 0.99) resulting in maximum adsorption capacity as 79.37 mg/g and 43.86 mg/g for cassava peel and rubber tree bark respectively. Validation of pseudo-second order model and Elovich model indicated the possibility of chemisorption being the rate limiting step. The multi-linearity in the diffusion model was further addressed using multi-sites models (two-site series interface (TSSI) and two-site parallel interface (TSPI) models). Considering the influence of interface properties on the kinetic nature of sorption, TSSI model resulted in low mass transfer rate (5% for cassava peel and 10% for rubber tree bark) compared to TSPI model. The study highlights the employability of two-site sorption model for simultaneous representation of different stages of kinetic sorption for finding the rate-limiting process, compared to the separate equilibrium and kinetic modeling attempts.

Estimation of Aging Properties for Plastic Bonded Explosives Using AKTS Thermokinetic Software (AKTS Software를 이용한 주조형 복합화약의 노화 특성 예측)

  • Kwon, Kuktae;Lee, Sojung;Kim, Seunghee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.66-71
    • /
    • 2018
  • The evaluation of the shelf-life of energetic materials is important. However, there are several difficulties associated with the evaluation. First, aging experiments require a considerable amount of time. Second, treating highly energetic materials is dangerous. For these reasons, many evaluation methods have been developed. Because most energetic materials decompose with the evolution of heat, it is important to analyze the thermal properties of energetic materials in order to understand decomposition and aging properties. In this paper, we describe the estimation of thermal aging properties and develop a kinetic model from spot data set of mechanical properties and estimate aging properties for mechanical results.

The Effect of Benzyl Alcohol on Dyeing Properties of Silk fiber (I) - The Rate of Dyeing by Milling Acid Dye - (Benzyl Alcohol이 견섬유의 염색성에 미치는 영향(I) - Milling계 산성염료에 의한 염색속도 -)

  • 탁태문;김종호;배도규
    • Textile Coloration and Finishing
    • /
    • v.4 no.2
    • /
    • pp.55-63
    • /
    • 1992
  • The effects of benzyl alcohol on the properties of dyeing kinetic of silk fibroin were studied. The acid dye used was C.I. Acid Red 114. The half dyeing time is shorten by addition of benzyl alcohol. The diffusion activation energy is higher with the increase of the solvent. The rate of dyeing at benzyl alcohol addition to the purified silk fibroin is faster than that of the unpurified one.

  • PDF

Temperature Dependence of Galvanomagnetic Properties in Thin Bi Film

  • Nam, S.W.
    • Journal of Magnetics
    • /
    • v.4 no.4
    • /
    • pp.111-114
    • /
    • 1999
  • Numerical calculation for temperature dependence of galvanomagnetic properties of thin bismuth films is pursued. The quasi-two dimensional system is treated in the perturbation formalism of previous study, where realistic screened potential due to impurity is assumed to be the only scattering channel. The potential is separated into pure two dimensional part and the remaining presumed perturbation part. Relaxation time and mobilities for both electron and hole are evaluated, then temperature dependence of the Hall coefficient and magnetoresistance is obtained. The broad minimum of magnetoresistnace is manifested, and the interpretation under the kinetic theory is made. Thickness dependence of the quantities are also shown, which are in good agreement with the expected quantum size effect.

  • PDF

A study on the Physico-chemical Properties of CB-ph. a New Anti-cancer drug

  • Kim, Su-Yoen;Kim, Dae-Duk;Lee, Chi-Ho
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.413.1-413.1
    • /
    • 2002
  • Purpose To investigate the physico-chemical properties of CB-ph [2-benzoyloxycinnamaldehyde], an anticancer drug obtained from Cinnamomum cassia using methylenechloride. and its stability in various aqueous solutions. Results CB-ph was rarely soluble in water but soluble in methanol and very soluble in ether. Kinetic salt effect on degradation of CB-ph in buffer solutions at pH 4.0 and 6$0^{\circ}C$ showed a linear relationship having a positive slope that means reactions between hydronium ions and protonated substrates. (omitted)

  • PDF

Thermodynamic Properties of Ubiquitin Folding Intermediate (Ubiquitin 폴딩 intermediate의 열역학적 특성)

  • Park, Soon-Ho
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Thermodynamic properties of ubiquitin transient folding intermediate were studied by measuring folding kinetics in varying temperatures and denaturant concentrations. Through quantitative kinetic modeling, the equilibrium constant, hence folding free energy, between unfolded state and intermediate state in several different temperatures were calculated. Using these values, the thermodynamic parameters were estimated. The heat capacity change $({\Delta}C_p)$ upon formation of folding intermediate from unfolded state were estimated to be around 80% of the overall folding reaction, indicating that ubiquitin folding intermediate is highly compact. At room temperature, the changes of enthalpy and entropy upon formation of the intermediate state were observed to be positive. The positive enthalpy change suggests that the breaking up of the highly ordered solvent structure surrounding hydrophobic side-chain upon formation of intermediate state. This positive enthalpy was compensated for by the positive entropy change of whole system so that formation of transient intermediate has negative free energy.

Characteristics of Cu and Cs Ions adsorbed on an immobilized Adsorbent including Zeolite Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트계 고정화 흡착제에 의한 Cu와 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The adsorption properties of $Cs^+$ and $Cu^{2+}$ ions were evaluated by using a polysulfone scoria zeolite (PSf-SZ) composite with synthetic zeolite synthesized from Jeju volcanic rocks (scoria). In order to investigate the adsorption properties, various parameters, such as pH, contact time, reaction rate, concentration, and temperature in aqueous solutions, were evaluated by tests carried out in batch experiments. The adsorption capacities of $Cs^+$ and $Cu^{2+}$ ions increased between pH 2 but achieved equilibrium at pH 4 and above. The adsorption rate increased rapidly up to the initial 24 h, after which it plateaued ; the adsorption rate then sustained at equilibrium from 48 h. The adsorption kinetics of $Cs^+$ and $Cu^{2+}$ ions were described better by the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacities of $Cs^+$ and $Cu^{2+}$ ions obtained from the Langmuir model were 53.8 mg/g and 84.7 mg/g, respectively. The calculated thermodynamic parameters showed that the adsorption of $Cs^+$ and $Cu^{2+}$ ions on PSf-SZ was feasible, spontaneous and endothermic reaction.

Reduced Chemical Kinetic Mechanism for Premixed CO/H2/Air Flames ([ CO/H2/Air ] 예혼합 화염에 대한 준총괄 화학반응 메커니즘)

  • Jang, Kyoung;Cha, Dong-Jin;Joo, Yong-Jin;Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • A reduced chemical kinetic mechanism is developed in order to predict the flame phenomena in premixed $CO/H_2/Air$ flames at atmospheric pressure, aimed at studying the coal gas combustion for the IGCC applications. The reduced mechanism is systematically derived from a full chemical kinetic mechanism involving 11 reacting species and 66 elementary reactions. This mechanism consists of four global steps, and is capable of explicitly calculating the concentration of 7 non-steady species and implicitly predicting the concentration of 3 steady state species. The fuel blend contains two fuels with distinct thermochemical properties, whose contribution to the radical pool in the flame is different. The flame speeds predicted by the reduced mechanism are in good agreement with those by the full mechanism and experimental results. In addition, the concentration profiles of species and temperature are also in good agreement with those by the full mechanism.

SOLAR MICROWAVE BURSTS AND ELECTRON KINETICS

  • LEE JEONGWOO;BONG SU-CHAN;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.63-73
    • /
    • 2003
  • Solar flares present a number of radiative characteristics indicative of kinetic processes of high energy particles. Proper understanding of the kinetic processes, however, relies on how well we can separate the acceleration from transport characteristics. In this paper, we discuss microwave and hard X-ray bursts as a powerful tool in investigating the acceleration and transport of high energy electrons. After a brief review of the studies devoted to the kinetic process of solar flare particles, we cast them into a simple formulation which allows us to handle the injection, trap, and precipitation of flare electrons self-consistently. The formulation is then taken as a basis for interpreting and analyzing a set of impulsive and gradual bursts occurred on 2001 April 6 observed with the Owens Valley Solar Array, and HXT/WBS onboard Yohkoh satellite. We quantify the acceleration, trap, and precipitation processes during each burst in terms of relevant time scales, and also determine ambient density and magnetic field. Our result suggests that it should be the acceleration property, in particular, electron pitch angle distribution, rather than the trap condition, that is mainly responsible for the distinctive properties of the impulsive and gradual flares.