• 제목/요약/키워드: Kinetic properties

검색결과 523건 처리시간 0.022초

저온분사 공정에서 알루미늄 분말의 산화가 임계 적층 속도에 미치는 영향 (Oxidation Effect on the Critical Velocity of Pure Al Feedstock Deposition in the Kinetic Spraying Process)

  • 강기철;윤상훈;지율권;이창희
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.35-41
    • /
    • 2007
  • In kinetic spraying process, the critical velocity is an important criterion which determines the deposition of a feedstock particle onto the substrate. In other studies, it was experimentally and numerically proven that the critical velocity is determined by the physical and mechanical properties and the state of materials such as initial temperature, size and the extent of oxidation. Compared to un-oxidized feedstock, oxidized feedstock required a greater kinetic energy of in-flight particle to break away oxide film during impact. The oxide film formed on the surface of particle and substrate is of a relatively higher brittleness and hardness than those of general metals. Because of its physical characteristics, the oxide significantly affected the deposition behavior and critical velocity. In this study, in order to investigate the effects of oxidation on the deposition behavior and critical velocity of feedstock, oxygen contents of Al feedstock were artificially controlled, individual particle impact tests were carried out and the velocities of in-flight Al feedstock was measured for a wide range of process gas conditions. As a result, as the oxygen contents of Al feedstock increased, the critical velocity increased.

유변학적 성질 측정으로 측정한 고분자 계면에서의 반응 kinetics와 morphology 변화 (Reaction Kinetics and Morphological Changes at Polymer-polymer Interface measured by Rheological Properties)

  • Kim, Hwang-Yong;Unyong Jeong;Kim, Jin-Kon
    • 한국유변학회:학술대회논문집
    • /
    • 한국유변학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.25-27
    • /
    • 2002
  • In this study we investigated the reaction kinetics by a convenient but useful method-rheology to characterize the interface between two immiscible blends with a Reactive compatibilizer. Also, we made an attempt to correlate changes of interface roughness with rheological properties. The blend systems employed in this study was mono-carboxylated polystyrene (PS-mCOOH) and an poly(methyl methacrylate-ran-glycidylmethacrylate) (PMMA-GMA). PS-mCOOH was synthesized by an anionic polymerization and PMMA-GMA by a free radical polymerization. We prepared two plates of each polymer using compression molding with a smooth surface molder, then put one upon another. As soon as these two plates welds together inside a rheometer under nitrogen environment, the torque and moduli were obtained with reaction time at different temperatures. Through the analysis of this modulus change with reaction time, we estimated interfacial reaction and roughening. The increment of modulus in initial state can be correlated to the extent of reaction. We obtained the reaction kinetic constant by fitting appropriate kinetic equation into experimental data. We also showed that increment of modulus in later state was due to by roughened interface.

  • PDF

FO-WLP (Fan Out-Wafer Level Package) 차세대 반도체 Packaging용 Isocyanurate Type Epoxy Resin System의 경화특성연구 (Cure Properties of Isocyanurate Type Epoxy Resin Systems for FO-WLP (Fan Out-Wafer Level Package) Next Generation Semiconductor Packaging Materials)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.65-69
    • /
    • 2019
  • The cure properties of ethoxysilyl diglycidyl isocyanurate(Ethoxysilyl-DGIC) and ethylsilyl diglycidyl isocyanurate (Ethylsilyl-DGIC) epoxy resin systems with a phenol novolac hardener were investigated for anticipating fan out-wafer level package(FO-WLP) applications, comparing with ethoxysilyl diglycidyl ether of bisphenol-A(Ethoxysilyl-DGEBA) epoxy resin systems. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The isocyanurate type epoxy resin systems represented the higher cure conversion rates comparing with bisphenol-A type epoxy resin systems. The Ethoxysilyl-DGIC epoxy resin system showed the highest cure conversion rates than Ethylsilyl-DGIC and Ethoxysilyl-DGEBA epoxy resin systems. It can be figured out by kinetic parameter analysis that the highest conversion rates of Ethoxysilyl-DGIC epoxy resin system are caused by higher collision frequency factor. However, the cure conversion rate increases of the Ethylsilyl-DGEBA comparing with Ethoxysilyl-DGEBA are due to the lower activation energy of Ethylsilyl-DGIC. These higher cure conversion rates in the isocyanurate type epoxy resin systems could be explained by the improvements of reaction molecule movements according to the compact structure of isocyanurate epoxy resin.

Competitive Spectrophotometry for Microbial Dipeptide Transport Systems

  • Hwang, Se-Young;Ki, Mi-Ran;Cho, Suk-Young;Lim, Wang-Jin;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권2호
    • /
    • pp.92-97
    • /
    • 1996
  • Portage kinetic constants of peptide transport can be measured by competitive spectrophotometry. The kinetic constants of L-Glu-L-Glu transport in Escherichia coli were ascertained using L-Phe-L-3-thia-Phe (PSP) as a detector. Since the production of thiophenol upon intracellular hydrolysis of PSP was competitively inhibited by L-Glu-L-Glu, it was able to compute the kinetic constants of L-Glu-L-Glu using this method. The resulted data were in agreement with the values obtained by the method of Michaelis-Menten kinetics. The potential of this method was examined against dipeptide transport systems in various microorganisms. These results strongly suggest that the overall properties of individual systems for dipeptide transports can be easily characterized by competitive spectrophotometry.

  • PDF

화학증착된 실리콘 카바이드 박막의 속도론적 모델 및 기계적 성질에 미치는 반응가스 분압의 영향 (Effect of Partial Pressure of the Reactant Gas on the Kinetic Model and Mechanical Properties of the Chemical Vapor Deposited Silicon Carbide)

  • 어경훈;소명기
    • 한국세라믹학회지
    • /
    • 제28권6호
    • /
    • pp.429-436
    • /
    • 1991
  • Silicon carbide has been grown by a chemical vapor deposition (CVD) technique using CH3SiCl3 and H2 gaseous mixture onto a graphite substrate. Based on the thermodynamic equilibrium studies and the suggestion that the deposition rate of SiC is controlled by surface reaction theoretical kinetic equation for CVD of silicon carbide has been proposed. The proposed theoretical kinetic equation for CVD of silicon carbide agreed well with the experimental results for the variation of the deposition rate as a function of the partial pressure of reactant gases. The Vikers microhardness of the SiC layer was about 3000∼3400 kg/$\textrm{mm}^2$ at room temperature.

  • PDF

Kinetic Study of Milk Gellation by the Electrical Resistance Measurement

  • LEE Keun Tai
    • 한국수산과학회지
    • /
    • 제22권6호
    • /
    • pp.391-396
    • /
    • 1990
  • Changes in electric resistance was measured to carry out the kinetic analysis of milk gellation upon addition of rennet. Using pasteurized milk and commercial rennin, kinetic properties were investigated during milk gellation in terms of initial hydrolysis and coagulation steps. Specially designed reactor with two platinum electrodes was used throughout the experiments. As a function of either milk concentrations or reaction temperatures, gel time exhibited directly proportional relations: on the contrary, gel time was inversely pro-portional to enzyme concentration. Activation energies for enzymatic degradation and cogulation were 16.3, 4.6 and 34, 8.6 Kcal/mol, repectively. This simple analytical method proved to be very effective to characterize the mechanism of milk gellation. Moreover, unlike other methods, this method reguired simple apparatus and short time of analysis.

  • PDF

산란 및 투과된 수소 이온의 분자 전산 연구 I. 니켈 (100) 표면의 직각 입사 (Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions I. Normal Incident Angle to Ni (100) Surface)

  • 서숭혁;민웅기
    • 한국수소및신에너지학회논문집
    • /
    • 제11권3호
    • /
    • pp.127-136
    • /
    • 2000
  • Molecular dynamics simulations have been carried out to investigate the scattering and penetration properties of hydrogen ions with the normal incident angle to Ni (100) surface. The initial kinetic energies of hydrogen ions range from 100 to 1,600 eV. The simulation results are used to assess the applicabilities of theoretical predictions based on the binary collision approximation, and, in the high kinetic regime, theoretical results for scattering energies were shown to he a good agreement with molecular simulations. The angle dependencies on both scattering and penetration distributions were found in the longitudinal direction, but not in the azimuthal direction except for the high kinetic energy of 1,600 eV.

  • PDF

Kinetic spray 공정을 이용한 Cu repair 코팅 소재 제조 및 열처리에 따른 미세조직과 물성 변화 (Manufacturing of Cu Repair Coating Material Using the Kinetic Spray Process and Changes in the Microstructures and Properties by Heat Treatment)

  • 전민광;김형준;이기안
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.349-354
    • /
    • 2014
  • This study is a basic research for repair material production which manufactured a Cu repair coating layer on the base material of a Cu plate using kinetic spray process. Furthermore, the manufactured material underwent an annealing heat treatment, and the changes of microstructure and macroscopic properties in the Cu repair coating layer and base material were examined. The powder feedstocks were sphere-shaped pure Cu powders with an average size of $27.7{\mu}m$. The produced repair coating material featured $600{\mu}m$ thickness and 0.8% porosity, and it had an identical ${\alpha}$-Cu single phase as the early powder. The produced Cu repair coating material and base material displayed extremely high adhesion characteristics that produced a boundary difficult to identify. Composition analysis confirmed that the impurities in the base material and repair coating material had no significant differences. Microstructure observation after a $500^{\circ}C/1hr$. heat treatment (vacuum condition) identified recovery, recrystallization and grain growth in the repair coating material and featured a more homogeneous microstructure. The hardness difference (${\Delta}H_v$) between the repair coating material and base material significantly reduced from 87 to 34 after undergoing heat treatment.

Aspergillus niger ATCC 16513과 대두(Glycine max. L) $\alpha$-galactosidase의 kinetic 성질 (Kinetic Properties of $\alpha$-Galactosidase from Aspergillus niger ATCC 16513 and Soybean(Glycine max. L))

  • 금종화;이종수;신철승
    • 자연과학논문집
    • /
    • 제5권1호
    • /
    • pp.53-57
    • /
    • 1992
  • Aspergillus niger ATCC 16513과 대두(Glycine max. L)의 정제 $\alpha$-galactosidase를 사용 하여 몇가지 이들의 kinetic성질을 조사 하였다. Asp. niger $\alpha$-galactosidase의 raffinose와 stachyose에 대한 Km값은 각각 37.0mM과 55.5mM, 대두 $\alpha$-galactosidase는 50.0mM과 55.5mM로서 PNPG보다 이들에 대한 친화성이 적었다. 또한 galactose는 ASP. niger와 대두 $\alpha$-galactosidase 모두의 활성을 저해 하였으나 2-mereaptoethanol과 L-cystene은 대두 $\alpha$-galatosidase의 활성만을 약간 저해 하였다. Asp. niger와 대두 $\alpha$-galactosidase의 활성에 관여하는 아미노산은 diethyl pyrocarbonate에 의한 화학수식에 의하여 histidine임이 확인 되었고 Asp. niger $\alpha$-galactosidase의 1mole당 아미노산 잔기수는 모두 902개, 대두$\alpha$-galactosidase는 286개 이었다.

  • PDF