• Title/Summary/Keyword: Kinetic isotope

Search Result 145, Processing Time 0.023 seconds

Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1625-1629
    • /
    • 2011
  • Kinetic studies of the reactions of O,O-diphenyl Z-S-aryl phosphorothioates with X-benzylamines have been carried out in dimethyl sulfoxide at 55.0 $^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}_X$) and Bronsted [log $k_2$ vs $pK_a(X)$] plots for substituent X variations in the nucleophiles are biphasic concave downwards with a maximum point at X = H, and the unusual positive ${\rho}_X$ and negative ${\beta}_X$ values are obtained for the strongly basic benzylamines. The sign of the cross-interaction constant (${\rho}_{XZ}$) is negative for both the strongly and weakly basic nucleophiles. Greater magnitude of ${\rho}_{XZ}$ value is observed with the weakly basic nucleophiles (${\rho}_{XZ}$ = -2.35) compared to with the strongly basic nucleophiles (${\rho}_{XZ}$ = -0.03). The deuterium kinetic isotope effects ($k_H/k_D$) involving deuterated benzylamines [$XC_6H_4CH_2ND_2$] are primary normal ($k_H/k_D$ > 1). The proposed mechanism is a concerted $S_N2$ involving a frontside nucleophilic attack with a hydrogen bonded, four-center-type transition state for both the strongly and weakly basic nucleophiles. The unusual positive ${\rho}_X$ and negative ${\beta}_X$ values with the strongly basic benzylamines are rationalized by through-space interaction between the ${\pi}$-clouds of the electron-rich phenyl ring of benzylamine and the phenyl ring of the leaving group thiophenoxide.

Kinetic Studies of the Solvolyses of 4-Nitrophenyl Phenyl Thiophosphorochloridate

  • Koh, Han-Joong;Kang, Suk-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2413-2418
    • /
    • 2009
  • Rates of solvolyses of 4-nitrophenyl phenyl thiophosphorochloridate (4-N$O_2$PhOP(S)(Cl)OPh, $\underline{1}$) in ethanol, methanol, and aqueous binary mixtures incorporating ethanol, methanol, acetone, and 2,2,2-trifluroethanol (TFE) are reported. Thermodynamic parameters were determined at several temperatures in three representative solvents. The extended Grunwald-Winstein equation was applied to 29 solvents and the correlation coefficient (R) showed 0.959. The sensitivities (l = 1.37 and m = 0.62) are similar to those obtained for diphenyl thiophosphorochloridate (($PhO)_2$PSCl, $\underline{2}$), diphenyl phosphorochloridate (($PhO)_2$POCl, $\underline{3}$), diphenyl phosphinic chloride ($Ph_2$POCl, $\underline{4}$), and diphenyl thiophosphinic chloride ($Ph_2$PSCl, $\underline{5}$). The solvolytic reaction mechanism of 4-nitrophenyl phenyl thiophosphorochloridate ($\underline{1}$) is suggested to be proceeded a $S_N$2 process as previously reported result. The activation enthalpies are shown as slightly low as ${\Delta}H^{\neq}\;=\;9.62\;to\;11.9\;kcal{\cdot}mol^{-1}$ and the activation entropies are shown as slightly high negative value as ${\Delta}S^{\neq}\;=\;-34.1\;to\;-44.9\;cal{\cdot}mol^{-1}{\cdot}K^{-1}$ compared to the expected $S_N$2 reaction mechanism. Kinetic solvent isotope effects are accord with a typical $S_N$2 mechanism as shown in the range of 2.41 in MeOH/ MeOD and 2.57 in $H_2O/D_2O$ solvent mixtures.

Nucleophilic Substitution Reactions of N-Methyl α-Bromoacetanilides with Benzylamines in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.857-862
    • /
    • 2011
  • Kinetic studies of the reactions of N-methyl-Y-${\alpha}$-bromoacetanilides with substituted X-benzylamines have been carried out in dimethyl sulfoxide at $25.0^{\circ}C$. The Hammett plots for substituent X variations in the nucleophiles (log $k_N$ vs ${\sigma}_X$) are slightly biphasic concave upwards/downwards, while the Bronsted plots (log $k_N$ vs $pK_a$) are biphasic concave downwards with breakpoints at X = H. The Hammett plots for substituent Y variations in the substrates (log $k_N$ vs ${\sigma}_Y$) are biphasic concave upwards/downwards with breakpoints at Y = H. The cross-interaction constant $\rho_{XY}$ values are all negative: $\rho_{XY}$ = -0.32 for X = Y = electron-donating; -0.22 for X = electron-withdrawing and Y = electron-donating; -1.80 for X = electron-donating and Y = electronwithdrawing; -1.43 for X = Y = electron-withdrawing substituents. Deuterated kinetic isotope effects are primary normal ($k_H/k_D$ > 1) for Y = electron-donating, while secondary inverse ($k_H/k_D$ < 1) for Y = electronwithdrawing substituent. The proposed mechanisms of the benzylaminolyses of N-methyl-Y-${\alpha}$-bromoacetanilides are a concerted mechanism with a five membered ring TS involving hydrogen bonding between hydrogen (deuterium) atom in N-H(D) and oxygen atom in C = O for Y = electron-donating, while a concerted mechanism with an enolate-like TS in which the nucleophile attacks the ${\alpha}$-carbon for Y = electronwithdrawing substituents.

Solvolyses of N-Methyl-N-phenylcarbamoyl Chlorides with Electron Acceptor Substituents in A Queous Binary Mixtures

  • Gu, In Seon;An, Seon Gyeong;Yang, Yeol;Go, Han Jung;Choe, Mun Ho;Lee, Ik Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.842-846
    • /
    • 2001
  • Solvolyses of N-methyl-N-phenylcarbamoyl chlorides in aqueous binary mixtures of acetone, ethanol, methanol and in water, D2O, and 50% D2O-CH3OD are investigated at 25.0 $^{\circ}C.$ The Grunwald-Winstein plots of first-ord er rate constants for N-methyl-N-phenylcarbamoyl chlorides with YCl (based on 2-adamantyl chloride) show a dispersion phenomenon. The ring parameter (I) has been shown to give considerable improvement when it is added as an hI term to the original Grunwald-Winstein and extended Grunwald-Winstein correlations for the solvolyses of N-methyl-N-phenylcarbamoyl chlorides. This study has shown that the magnitude of l, m and h values associated with a change of solvent composition is able to predict the dissociative SN2 transition state. The kinetic solvent isotope effects determined in deuterated water are consistent with the proposed mechanism of the general base catalyzed and/or a dissociative SN2 mechanism channel for N-methyl-N-phenylcarbamoyl chlorides solvolyses.

Kinetics and Mechanism of the Aminolysis of O-Methyl-S-Phenylthiocarbonates in Methanol

  • Song, Ho-Bong;Choi, Moon-Ho;Koo, In-Sun;Oh, Hyuck-Keun;Lee, Ik-choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.91-94
    • /
    • 2003
  • Kinetic studies of the reaction of O-methyl-S-phenylthiocarbonates with benzylamines in methanol at 45.0 ℃ have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterionic tetrahedral intermediate, $T^{\pm}$, with a hydrogen-bonded four-center type transition state (TS). These mechanistic conclusions are drawn based on (ⅰ) the large magnitude of ${\rho}_X\;and\;{\rho}_Z$, (ⅱ) the normal kinetic isotope effects $(k_H/k_D\;>\;1.0)$ involving deuterated benzylamine nucleophiles, (ⅲ) the positive sign of ${\rho}_{XZ}$ and the larger magnitude of ${\rho}_{XZ}$ than that for normal $S_N2$ processes, and lastly (ⅳ) adherence to the reactivity-selectivity principle (RSP) in all cases.

Nucleophilic Substitution Reactions of O-Methyl N,N-Diisopropylamino Phosphonochloridothioate with Anilines and Pyridines

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1016-1022
    • /
    • 2014
  • The kinetic studies on the reactions of O-methyl N,N-diisopropylamino phosphonochloridothioate with X-anilines and X-pyridines have been carried out in acetonitrile. The free energy relationship with X in the anilines exhibits biphasic concave upwards with a break region between X = (H and 4-F), giving unusual negative ${\beta}_X$ and positive ${\rho}_X$ values with weakly basic anilines. The unusual phenomenon is rationalized by isokinetic relationship. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate is proposed based on the selectivity parameter and variation trend of the deuterium kinetic isotope effects with X. The free energy relationship with X in the pyridines exhibits biphasic concave upwards with a break point at X = 3-MeO. A concerted mechanism is proposed based on relatively small ${\beta}_X$ value, and frontside and backside nucleophilic attack are proposed with strongly and weakly basic pyridines, respectively.

Kinetics and Mechanism for the Reactions of N-Methyl-N-phenylcarbamoyl Chlorides with Benzylamines in Acetonitrile

  • 고한중;이호찬;이해황;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.712-715
    • /
    • 1996
  • Kinetic studies are carried out on the reactions of N-methyl-N-phenylcarbamoyl chlorides with benzylamines in acetonitrile. The selectivity parameters, ρX (=-0.6~-0.8), ρY (=1.0-1.1), and ρXY (=-0.14), suggest that the reaction proceeds by an SN2 mechanism. Kinetic isotope effects, kH/kD, involving deuterated nucleophiles (XC6H4CH2ND2) are all inverse type (<1.0), and the trends of changes in the magnitude are consistent with those expected for the observed negative sign of ρXY(=∂ρX/∂σY = ∂ρY/∂σX < 0). The relatively low activation enthalpies also support the proposed mechanism.

Tightness of the Transition State for the Reactions of Secondary Alkyl Arenesulfonates with Anilines in Acetonitrile

  • 오혁근;권영봉;정동수;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.827-831
    • /
    • 1995
  • Kinetic studies on the reactions of five secondary acylic alkyl arenesulfonates with anilines are carried out in acetonitrile at 65.0 ℃. The magnitude of ρXZ determined (ρXZ=0.12-0.13) is slightly greater than that for the alicyclic series (ρXZ=0.11) under the same experimental condition. Ab initio MO results are found to support the slightly tighter transition state expected from the greater magnitude of ρXZ for the acyclic series. Despite the small variations, the magnitude of ρXZ and the theoretical transition state tightness remain relatively constant for the secondary carbon centers. Secondary kinetic isotope effects involving deuterated aniline nucleophiles show a successively smaller kH/kD(<1.0) value for a more sterically crowded reaction center carbon. This is in accord with the later transition state for bond-making predicted by the Bell-Evans-Polanyi principle for the more endothermic nucleophilic substitution reaction. Further support is provided by the results of the AM1 MO calculations on the reactions of secondary alkyl benzenesulfonates with chloride nucleophile.

Limitations of the Transition State Variation Model(5) Dual Reaction Channels for Solvolysis of Dansyl Chloride

  • Koo In Sun;Lee Ocg-Kyeong;Lee Ikchoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.395-398
    • /
    • 1992
  • Rate of solvolysis of dansyl chloride in aqueous binary mixtures of acetone, methanol and ethanol are reported. Kinetic solvent isotope effects in methanol and product selectivities in alcohol-water mixtures are also reported. Kinetic data are interpreted with the Grunwald-Winstein and Kivinen equations. The value of $k_{CH3OH}/k_{CH3OD}=1.76$ suggests that a general have catalyzed and/or an $S_AN$ pathway is operative in methanol, a less polar solvent. Rate-rate profiles for solvolysis of dansyl chloride in the aqueous binary media indicate a change in reaction channel from $S_AN$ (in less polar media) to $S_N2$ (in more polar media) mechanism.

Nucleophilic Substitution Reactions of 1- and 2-Naphtylmethyl Arenesulfonates with Anilines

  • 오혁근;송세정;신철호;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.161-164
    • /
    • 1997
  • Kinetic studies are carried out on the reactions of 1- and 2-naphthylmethyl arenesulfonates with anilines in acetonitrile at 25.0 ℃. The rates are faster for the 2-naphthylmethyl series than for the corresponding 1-naphthylmethyl series suggesting that there is a greater stabilization of positive charge development in the TS at the arylmethyl reaction center carbon for the former. The sign and magnitude of ρxz (=-0.12) are similar to those of the benzylic series. Thus, benzyl, 1- and 2-naphthylmethyl derivatives belong to a class of compounds which react with aniline nucleophiles through a relatively loose SN2 TS. Kinetic secondary deuterium isotope effects indicated that a stronger nucleophile and nucleofuge lead to a later TS as the definition of ρxz requires.