• Title/Summary/Keyword: Kinetic isotope

Search Result 145, Processing Time 0.027 seconds

Correlation of the Rates on Solvolysis of 2,2,2-Trichloroethyl Chloroformate Using the Extended Grunwald-Winstein Equation

  • Koh, Han-Joong;Kang, Suk-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1729-1733
    • /
    • 2012
  • The solvolysis rate constants of 2,2,2-trichloroethyl chloroformate ($Cl_3CCH_2OCOCl$, $\mathbf{3}$) in 30 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and the $Y_{Cl}$ solvent ionizing scale, with sensitivity values of $1.28{\pm}0.06$ and $0.46{\pm}0.03$ for $l$ and $m$, respectively. The activation enthalpies (${\Delta}H^{\neq}$) are 10.1 to 12.8 $kcal{\cdot}mol^{-1}$ and the activation entropies (${\Delta}S^{\neq}$) are -27.8 to -36.8 $cal{\cdot}mol^{-1}{\cdot}K^{-1}$, which is consistent with the proposed bimolecular reaction mechanism. The kinetic solvent isotope effect ($k_{MeOH}/k_{MeOD}$) of 2.39 is also in accord with $S_N2$ mechanism probably assisted by general-base catalysis.

Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.663-669
    • /
    • 2012
  • The nucleophilic substitution reactions of dibutyl chlorophosphate (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; kH/kD) are secondary inverse ($k_H/k_D$ = 0.86-0.97) with the strongly basic anilines while primary normal ($k_H/k_D$ = 1.04-1.10) with the weakly basic anilines. The DKIEs, steric effects of the two ligands, activation parameters, cross-interaction constants, variation trends of the kH/kD values with X, and mechanism are discussed for the anilinolyses of the nine ($R_1O$)($R_2O$)P(=O)Cl-type chlorophosphates. A concerted mechanism is proposed with a backside nucleophilic attack transition state for the strongly basic anilines and with a frontside attack involving a hydrogen-bonded four-center-type transition state for the weakly basic anilines on the basis of the magnitudes, secondary inverse and primary normal, and variation trends of the $k_H/k_D$ values with X.

Kinetics and Mechanism of the Anilinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl -5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1037-1041
    • /
    • 2012
  • The nucleophilic substitution reactions of (2R,4R,5S)-(+)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 3 involving a cyclic five-membered ring is considerably fast because of small negative value of the entropy of activation (${\Delta}S^\neq=-2cal\;mol^{-1}\;K^{-1}$) over considerably unfavorable enthalpy of activation (${\Delta}H^\neq=18.0\;kcal\;mol^{-1}$). Great enthalpy and small negative entropy of activation are ascribed to sterically congested transition state (TS) and bulk solvent structure breaking in the TS. A concerted $S_N2$ mechanism with a backside nucleophilic attack is proposed on the basis of the secondary inverse deuterium kinetic isotope effects, $k_H/k_D$ < 1.

Correlation of the Rates of Solvolysis of Electron-Rich Benzoyl Chloride Using the Extended Grunwald-Wistein Equation

  • Oh, Hyunjung;Choi, Hojune;Park, Jong Keun;Yang, Kiyull;Koo, In Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2697-2701
    • /
    • 2013
  • The solvolysis rate constants of piperonyloyl chloride (1) in 27 different solvents are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale, $Y_{Cl}$ solvent ionizing scale, and I aromatic ring parameter with sensitivity values of $0.30{\pm}0.05$, $0.71{\pm}0.02$, and $0.60{\pm}0.04$ for l, m, and h, respectively. The solvent kinetic isotope effect values (SKIE, $k_{MeOH}/k_{MeOD}$ and $k_{50%MeOD-50%D2O}$) of 1.16 and 1.12 were also in accord with the values for the $S_N1$ mechanism and/or the dissociative $S_N2$ mechanism. The product selectivity values (S) for solvolysis of 1 in alcohol/water mixtures were in the range of 0.5 to 1.9, which is also consistent with the proposed unimolecular ionization mechanism.

Kinetics and Mechanism of the Pyridinolysis of Diphenyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Dey, Nilay Kumar;Guha, Arun Kanti;Kim, Chan-Kyung;Lee, Bon-Su;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1797-1802
    • /
    • 2007
  • The kinetics and mechanism of the nucleophilic substitution reactions of diphenyl phosphinic (1) and thiophosphinic (2) chlorides with substituted X-pyridines are investigated kinetically in acetonitrile at 35.0 and 55.0 oC, respectively. A concerted mechanism with backside nucleophilic attack is proposed for the pyridinolysis of 1, on the basis of the linear Bronsted plot with the βX value of 0.68. In the case of the pyridinolysis of 2, the Hammett and Bronsted plots are biphasic concave upwards with the break point at 3- phenyl pyridine. These results indicate a change in mechanism from a concerted SN2(P) process with direct backside nucleophilic attack for less basic nucleophiles (X = 3-CN-3-Ph) to a stepwise process with frontside attack for more basic nucleophiles (X = 4-MeO-3-Ph). Apparent secondary inverse kinetic isotope effects with deuterated pyridine (C5D5N), kH/kD < 1, are observed for the pyridinolysis of 1 and 2.

Kinetics and Mechanism of the Addition of Benzylamines to Ethyl-α-cyanocinnamates in Acetonitrile

  • Oh, Hyuck-Keun;Yang, Jin-Hee;Hwang, Young-Hee;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.221-224
    • /
    • 2002
  • Nucleophilic addition reactions of benzylamines (BA; $XC_6H_4CH_2NH_2$) to ethyl-${\alpha}$-cyanocinnamates (ECC;$YC_6H_4CH$=C(CN)COOEt) have been investigated in acetonitrile at $30.0^{\circ}C$. The rate is first order with respect to BA and ECC. The rate is slower than that expected from the additive effect of ${\sigma}^-$ or $R^-$ for the activating groups (CN and COOEt). Natural. bond orbital ${\pi}^{\ast}_{c=c}$ calculations show that the contribution of COOEt group may not be fully effective despite the coplanar molecular structure. The selectivity parameters including the cross-interaction constant (${\rho}_{xy}$ = -0.22) indicate that the addition occurs in a single step. The kinetic isotope effects ($k_H/k_D$=2.5-2.8) involving deuterated BA ($XC_6H_4CH_2ND_2$) nucleophiles and activation parameters (${\Delta}H^{\neq}=4{\sim}6\;kcal\;mol^{-1};{\Delta}S^{\neq}=-45{\sim}-52\;e.u.$) suggest a cyclic transition state in which N-$C_{\alpha}$ and H-$C_{\beta}$ bonds are formed concurrently.

Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1997-2002
    • /
    • 2011
  • The nucleophilic substitution reactions of dicyclohexyl phosphinic chloride [3; $cHex_2$P(=O)Cl] with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at 60.0 $^{\circ}C$. The anilinolysis rate is too slow to be rationalized by the stereoelectronic effects. The rate is contrary to expectations for the electronic influence of the two ligands and exhibits exceptionally great negative deviation from the Taft's eq. The deuterium kinetic isotope effects (DKIEs) involving deuterated anilines invariably change from primary normal ($k_H/k_D$ > 1; max $k_H/k_D$ = 1.10 with X = 4-MeO) with the strongly basic anilines (X = 4-MeO, 4-Me, 3-Me) to secondary inverse ($k_H/k_D$ < 1; min $k_H/k_D$ = 0.673 with X = 3-Cl) with the weakly basic anilines (X = H, 4-F, 4-Cl, 3-Cl). A concerted $S_N2$ mechanism is proposed on the basis of both secondary inverse and primary normal DKIEs. The obtained DKIEs imply that the fraction of a frontside attack increases as the aniline becomes more basic. A hydrogen-bonded, four-center-type transition state is suggested for a frontside attack, while the trigonal bipyramidal pentacoordinate transition state is suggested for a backside attack.