• Title/Summary/Keyword: Kinetic isotope

Search Result 145, Processing Time 0.027 seconds

Stoichiometric Solvation Effects. Solvolysis of Methanesulfonyl Chloride

  • Gu, In Seon;Yang, Gi Yeol;An, Seon Gyeong;Lee, Jong Gwang;Lee, Ik Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.955-956
    • /
    • 2000
  • Solvolyses of methanesulfonyl chloride in water, $D^2O$, $CH^3OD$, and in aqueous binary mixtures of acetone, eth-anol and methanol are investigated at 25, 35 and $45^{\circ}C.$ The Grunwald-Winstein plot of first-order rate con-stants for the solvolytic react ion of methanesulfonyl chloride with YCl (based on 2-adamantyl chloride) shows marked dispersions into three separate lines for three aqueous mixtures with a small m value (m < 0.30), and shows a rate maximum for aqueous alcoholic solvents. Stoichiometric third-order rate constants, kww and kaa were calculated from the observed first-order rate constants and (kaw + kwa) was calculated from the kww and kaa values. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed and/or SAN/SN2 reaction mechanism for methanesulfonyl chloride solvolyses based on mass law and stoichiometric solvation effect studies.

Stoichiometric Solvation Effects. Part 4. Product-Rat Correlations for Solvolyses of p-Methoxyphenyl Chloroformate in Alcohol-Water Mixtures

  • 구인선;양기열;구자찰;박종근;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.1017-1021
    • /
    • 1997
  • Solvolyses of p-methoxyphenyl chloroformate in water, D2O, CH3OD, 50% D2O-CH3OD, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25.0 ℃. Product selectivities are reported at 25 ℃ for a wide range of ethanol-water and methanol-water solvent compositions. The Grunwald-Winstein plots of first-order rate constants for p-methoxyphenyl chloroformate with YCl (based on 1-adamantyl chloride) show marked dispersions into three separate curves for the three aqueous mixtures with a small m value and a rate maximum for aqueous alcohol solvents. Third-order rate constants, kww, kaw, kwa and kaa were calculated from the observed kww and kaa values together with kaw and kwa calculated from the intercept and slope of the plot of 1/S vs. [alcohol]/[water]. The calculated rate constants, kcalc and mol % of ester agree satisfactorily with those of the observed rate constants, kobs and mol % of ester, supporting the stoichiometric solvation effect analysis. The kinetic solvent isotope effects determined in water and methanol are consistent with the proposed mechanism of the general base catalyzed carbonyl addition-elimination.

Nucleiphilic Substitution Reactions of Thiophenyl Dimethylacetates and Trimethylacetates wkth Benzylamines in Acetonitfile

  • O, Hyeok Geun;Park, Chi Yeol;Lee, Jae Mun;Lee, Ik Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.383-387
    • /
    • 2001
  • The kinetics and mechanism of the reactions of thiophenyl dimethylacetates (TDA) and trimethylacetates (TTA) with benzylamines in acetonitrile are studied. The reactions are first order in both the amine and the substrate. Relatively large values of ${\beta}X(\betanuc$ = 1.1-1.5; TDA and 1.1-1.5; TTA) and ${\beta}Z({\beta}lg$ = -1.8~-2.0; DTA and -1.3~-1.6; TTA) for benzylamines, significantly large kH/kD values (=1.2-1.5; DTA and 1.2-1.5; TTA) involving deuterated benzylamines, and large ${\rho}XZ$ (=0.82; TDA and 1.05; TTA) values are interpreted to indicate stepwise acyl transfer mechanism, but with the hydrogen bonded four center type transition state for benzylamine. The relatively greater magnitudes of ${\rho}XZ$ and the secondary kinetic isotope effects involving deuterated nucleophiles are in line with the proposed mechanism.

Nucleophilic Substitution Reactions of Thiopheneethyl Arenesulfonates with Anilines and N,N-Dimethylanilines

  • 오혁근;윤정환;조인호;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.390-394
    • /
    • 1997
  • Nucleophilic substitution reactions of 2-thiopheneethyl benzenesulfonates (2-TEB) and 3-thiopheneethyl benzenesulfonates (3-TEB) with anilines and N,N-dimethylanilines (DMA) are investigated in acetonitrile at 60.0 ℃. The cross-interaction constants ρxz determined for the reactions with anilines are large negative (- 0.50) which are comparable to those for the similar predominantly frontside-attack SN2 reactions of 1-phenylethyl (1-PEB), 2-phenylethyl (2-PEB) and cumyl benzenesulfonates. A large negative ρxz value (- 0.4∼- 0.8) is considered to provide a mechanistic criterion for the frontside-attack SN2 mechanism with a four-center transition state. In agreement with this proposal the kinetic isotope effects, kH/kD, involving deuterated aniline nucleophiles are all greater than one reflecting partial N-H(D) bond cleavage in the transition state. The MO theoretical reactant structures of 1-PEB, 2-PEB and 2-TEB based on the PM3 calculation show that the benzene ring blocks the backside nucleophile approach to the reaction center carbon (Cα) enforcing the frontside-attack SN2 mechanism.

Kinetics and Mechanism of the Aminolysis of Thiophenyl Acetates in Acetonitrile

  • 오혁근;양진희;이해황;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1418-1420
    • /
    • 1999
  • Kinetics and mechanism of the aminolysis of Z-thiophenyl acetates with X-benzylamines are investigated in acetonitrile at 45.0 ℃. The magnitudes of Bronsted coefficients β$_x$ (=1.3~-1.6) and β$_z$ (= -2.1~-2.4) are all large and cross-interaction constant ρxz is relatively large and positive (0.90). These trends are consistent with the rate-limiting breakdown of a tetrahedral intermediate, $T^±$. The proposed mechanism is also supported by adherence of the rate data to the reactivity-selectivity principle (RSP). The kinetic isotope effects, $k_H/k_D$, are greater than unity (1.3-1.4) suggesting a possibility of hydrogen-bonded four-centered transition state. The activation parameters, ΔH$^≠$ and ΔS$^≠$, are consistent with this transition-state structure.

Nucleophilic Substitution Reaction of α-Methoxy-α-(trifluoromethyl)phenylacetyl Chloride in Alcohol-Water Mixtures

  • 구인선;이성인;안선경;양기열;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1451-1456
    • /
    • 1999
  • Solvolyses of α-methoxy-α-(trifluoromethyl)phenylacetyl chloride in H₂O, D₂O, CH₃OD, 50% D₂O-CH₃OD, and in aqueous binary mixtures of acetone, dioxane, ethanol and methanol are investigated at 25.0℃. The Grunwald-Winstein plots of first-order rate constants for α-methoxy- α-(trifluoromethyl)phenylacetyl chloride with $Y_{Cl}$ show a dispersion phenomenon. Solvent nucleophilicity N has been shown to give considerable im-provement when it is added as an 1N term to the original Grunwald-Winstein for the solvolyses of α-methoxy- α-(trifluoromethyl)phenylacetyl chloride. The dispersions in the Grunwald-Winstein correlations in the present studies are caused by solvent nucleophilicity. The magnitude of l and m values associated with a change of solvent composition predicts the associative $S_N2$ transition state. The kinetic solvent isotope effects determined in deuterated water and methanol are consistent with the proposed mechanism of the general base catalyzed associative $S_N2$ or $S_AN$ mechanism for the of α-methoxy- α-(trifluoromethyl)phenylacetyl chloride.

Transition-State Variation in the Solvolyses of Phenyl Chlorothionoformate in Alcohol-Water Mixtures

  • 구인선;양기열;강대호;박혜진;강금덕;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.577-580
    • /
    • 1999
  • Solvolyses of phenyl chlorothionoformate in water, D2O, CH3OD, 50% D2O-CH3OD, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25.0℃. The Grunwald-Winstein plots of firstorder rate constants for phenyl chlorothionoformate with Ycl (based on 2-adamantyl chloride) show a dispersion phenomenon, and also the extended Grunwald-Winstein plots show a poor correlation for the solvolyses of phenyl chlorothionoformate. The ring parameter (I) has been shown to give considerable improvement when it is added as an hI term to the original and extended Grunwald-Winstein correlations. The dispersions in the Grunwald-Winstein correlations in the present studies are caused by the conjugation between the reaction center and the aromatic ring in the vicinity of the reaction center. This study has shown that the magnitude of l and m values associated with a change of solvent composition leads to predict the SN2 transition state. The kinetic solvent isotope effects determined in deuterated water and methanol are consistent with the proposed mechanism of the general base catalyzed SN2 mechanism.

The magnitude of ${\rho}x({\rho}_{nuc})$ versus the extent of bond formation in $S_N2$ Reactions

  • Lee, Ik-Choon;Koh, Han-Joong;Lee, Byung-Choon;Park, Byong-Seo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.576-581
    • /
    • 1994
  • The secondary deuterium kinetic isotope effects (SDKIE) involving deuterated aniline nucleophiles are reported for the reactions of benzyl bromides and chlorides and benzoyl chlorides in acetonitrile. The benzyl systems behave normally as to the trend of changes in SDKIE with the magnitude of ${\rho}X({\rho}_{nuc})$, whereas benzoyl system shows ananomaly; ${\mid}{\rho}_X{\mid}$ decreases with increase in the extent of bond making estimated by the SDKIE. This has been ascribed to the negative charge accumulation at the reaction center carbon in the transition state. The magnitude of ${\rho}_{XY}$ is found to decrease by ca. 0.03 with ten degree rise in the reaction temperature.

Kinetics and Mechanism of the Aminolysis of Phenylacetyl Chlorides in Acetonitrile

  • 이해황;이지원;고한중;이익천
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.642-645
    • /
    • 1998
  • The aminolysis reactions of phenylacetyl chlorides with anilines and N,N-dimethylanilines (DMAS) in acetonitrile at -15.0 ℃ are investigated. The magnitude of ρx (= -2.8 ∼ -2.9) and ρy (= 0.9 ∼ 1.3, after correcting for the fall-off), and the negative sign of ρxy (= -0.12) for the reactions with anilines suggest an associative SN2 mechanism. For the reactions with DMAs, the magnitude of these Hammett coefficients increases so that tighter bond making in the transition state (TS) is predicted. A nonlinear Hammett plots obtained for the DMAs with an electron acceptor substituent is interpreted to result from a more advanced degree of leaving group departure to assist closer approach of the bulky DMA in the TS. The normal secondary kinetic isotope effects $(k_H/k_D>1.0)$ involving deuterated anilines suggest partial deprotonation by hydrogen bonding to the departing chloride ion.

Nucleophilic Substitution Reactions of 1- and 2-Naphthylethyl Arenesulfonates with Anilines and Benzylamines

  • 오혁근;송세정;조인호;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.254-257
    • /
    • 1996
  • Nucleophilic substitution reactions of 1- and 2-naphthylethyl arenesulfonates, 2 and 3, with anilines and benzylamines in methanol at 65.0 ℃ are investigated. The rates are slower than those for the corresponding derivatives of 2-phenylethyl arenesulfonates, 1, which can be attributed to a greater degree of positive charge stabilization at Cα in the transition state (TS) by a greater electron supply from a phenyl ring compared to a naphthyl ring. The mechanism for the two naphthylethyl systems are similar to that for the 2-phenylethyl derivatives, except that the transition state is formed at somewhat an earlier position along the reaction coordinate. The secondary kinetic isotope effects involving deuterated nucleophilies indicate that naphthylethyl series are sterically more crowded in the TS than 2-phenylethyl system. The data in this work can not elucidate the possible participation of the aryl-assisted pathway in the reaction.