• Title/Summary/Keyword: Kinetic Parameters

Search Result 966, Processing Time 0.031 seconds

Curing Kinetics of the No-Flow Underfill Encapsulant

  • Jung, Hye-Wook;Han, Sang-Gyun;Kim, Min-Young;Kim, Won-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.134-137
    • /
    • 2001
  • The cure kinetics of a cycloalipatic epoxy / anhydride / Co(II) system for a no-flow underfill encapsulant, has been studied by using a differential scanning calorimetry(DSC) under isothermal and dynamic conditions over the temperature range of $160^{\circ}C ~220^{\circ}C$. The kinetic analysis was carried out by fitting dynamic/isothermal heating experimental data to the kinetic expressions to determine the reaction parameters, such as order of reaction and reaction constants. Diffusion-controlled reaction has been observed as the cure conversion increases and successfully analyzed by incorporating the diffusion control term into the rate equation. The prediction of reaction rates by the model equation corresponded well to experimental data at all temperature.

  • PDF

Temperature Profile Analysis of $Ti5_Si_3$ in Self-Propagating High Temperature Synthesis (SHS 법에 의한 $Ti5_Si_3$의 합성시 온도 Profile 분석)

  • 김도경;이형직;김익진;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.341-348
    • /
    • 1995
  • An analysis of the use of temperature profiles in the determination of the kinetic parameters of combustion synthesis of Ti5Si3 were investigated. From profile analysis, an apparent activation energy of 12KJ/mol was calculated. The Maximum heating rate achieved during 10wt% Ti5Si3 reaction by the product dilution method was approximately $1.5\times$104 K/s. Coupling this value with the measured wave velocity of 7.02 cm/s yields a maximum thermal gradient of 2.14$\times$103 K/cm. The value of tr (=t*) was calculated to be 1.2$\times$10-1 s and the value of td (=tx) was calculated to be 32.89 s. Using the definition of t* and the measured wave velocity, the effective thermal diffusivity, $\alpha$, was calculated to be 0.59$\times$10 $\textrm{cm}^2$/s. From these analysis, the power function, G, was also calculated.

  • PDF

Kinetics and Mechanism of Mutant O-acetylserine Sulfhydrylase-A (C43S) from Salmonella typhimurium LT-2

  • Yoon, Moon-Young
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.210-214
    • /
    • 1996
  • The pH dependence of the kinetic parameters of mutant O-acetylserine sulfhydrylase (OASS) from Salmonella typhimurium LT-2 has been determined in order to obtain information on the chemical mechanism. The initial velocity pattern obtained by varying the concentrations of OAS at several fixed concentrations of TNB, shows an intersection on the left of the ordinate at pH 7.0, indicating that the kinetic mechanism is a sequential mechanism in which substrate inhibition by OAS is observed while the wild type enzyme showed a ping pong mechanism. The values of $V/E_t$, $V/K_{OAS}E_{t}$ and $V/K_{TNB}E_{t}$ decreased by about 68%, 14% and 16% as compared with the wild type enzyme. The $V/K_{OAS}E_{t}$ is a pK of 6.5 on the acid side of the pH profile, and the $V/K_{TNB}$ is pH independent. As compared with the wild type enzyme, the pKs in the V/K profiles are shifted, reflecting that binding of the cofactor in free E:OAS is less asymmetric.

  • PDF

State-Space Approach to Modeling Dynamics of Gene Regulation in Networks

  • Xiong, Momiao;Jin, Li
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.191-196
    • /
    • 2005
  • Genetic networks are a key to unraveling dynamic properties of biological processes and regulation of genes plays an essential role in dynamic behavior of the genetic networks. A popular characterization of regulation of the gene is a kinetic model. However, many kinetic parameters in the genetic regulation have not been available. To overcome this difficulty, in this report, state-space approach to modeling gene regulation is presented. Second-order systems are used to characterize gene regulation. Interpretation of coefficients in the second order systems as resistance, capacitance and inductance is studied. The mathematical methods for transient response analysis of gene regulation to external perturbation are investigated. Criterion for classifying gene into three categories: underdamped, overdamped and critical damped is discussed. The proposed models are applied to yeast cell cycle gene expression data.

  • PDF

Prediction of Chlorine Concentration in a Pilot-Scaled Plant Distribution System (Pilot 규모의 모의 관망에서의 염소 농도 예측)

  • Kim, Hyun Jun;Kim, Sang Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.861-869
    • /
    • 2012
  • The chlorine's residual concentration prevents the regrowth of microorganism in water transport along the pipeline system. Precise prediction of chlorine concentration is important in determining disinfectant injection for the water distribution system. In this study, a pilot scale water distribution system was designed and fabricated to measure the temporal variation of chlorine concentration for three flow conditions (V = 0.88, 1.33, 1.95 m/s). Various kinetic models were applied to identify the relationship between hydraulic condition and chlorine decay. Genetic Algorithm (GA) was integrated into five kinetic models and time series of chlorine were used to calibrate parameters. Model fitness was compared by Root Mean Square Error (RMSE) between measurement and prediction. Limited first order model and Parallel first order showed good fitness for prediction of chlorine concentration.

A computer simulation of the peso-scale microstructural evolution in the ternary Ni- ${Ni_3}Al-{Ni_3}V$ system (${Ni_3}Al-{Ni_3}V$ 준이원계 합금 포함 삼원계 시스템에서의 meso-scale 미세구조의 전산 모사에 관한 연구)

  • Park, Sung-Il;Lee, Hyuck-Mo
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.947-952
    • /
    • 2001
  • The meso-scale microstructure of the $Ni-Ni_3Al- Ni_3V$ system is crucial to obtain both high strength and high toughness. Its evolution may be predicted with the aid of computer simulation of the compositional separation for heat-treated alloys. In this study, computer simulations of the hypothetical A-B-C ternary system, which is similar to the $Ni-Ni_3Al- Ni_3V$ system in terms of phase equilibria, have been performed using the kinetic modeling. Simulated morphologies were changed with nominal compositions and model parameters. It was showed the current model was useful and the more realistic model was proposed.

  • PDF

Simulation Study of Cardiovascular Response to Hemodialysis (혈액투석 중 심혈관계 응답의 수치적 연구)

  • 임기무;민병구;고형종;심은보
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1236-1239
    • /
    • 2004
  • The object of this study is to develop a model of the cardiovascular system capable of simulating the short-term transient and steady-state hemodynamic responses such as hypotention and disequilibrium syndrome during hemodialysis or hemofiltration. The model consists of a closed loop 12 lumped-parameter representation of the cardiovascular circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes and 3 compartmental body fluid and solute kinetic model. The hemodialysis model includes the dynamics of sodium, urea, and potassium in the intracellular and extracellular pools, fluid balance equations for the intracellular, interstitial, and plasma volumes. We have presented the results of many different simulations performed by changing a few model parameters with respect to their basal values.

  • PDF

Kinetics and Mechanism of Anilinolyses of Ethyl Methyl, Ethyl Propyl and Diisopropyl Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Hoque, Md. Ehtesham Ul;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3811-3816
    • /
    • 2013
  • Nucleophilic substitution reactions of ethyl methyl (2), ethyl propyl (4) and diisopropyl (7) chlorothiophosphates with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. A concerted mechanism is proposed based on the selectivity parameters. The deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are secondary inverse ($k_H/k_D=0.66-0.99$) with 2, primary normal and secondary inverse ($k_H/k_D=0.78-1.19$) with 4, and primary normal ($k_H/k_D=1.06-1.21$) with 7. The primary normal and secondary inverse DKIEs are rationalized by frontside attack involving hydrogen bonded, four-center-type transition state, and backside attack involving in-line-type transition state, respectively. The anilinolyses of ten chlorothiophosphates are examined based on the reactivity, steric effect of the two ligands, thio effect, reaction mechanism, DKIE and activation parameter.

A New Cure Kinetic Model Using Dynamic Differential Scanning Calorimetry (일정온도 상승률 열분석법을 이용한 수지 경화 모델 개발)

  • Eom, Mun-Gwang;Hwang, Byeong-Seon;Isaac M. Daniel
    • 연구논문집
    • /
    • s.29
    • /
    • pp.151-162
    • /
    • 1999
  • In general, manufacturing processes of thermosetting composites consist of mold filling and resin cure. The important parameters used in modeling and designing mold filling are the permeability of the fibrous preform and the viscosity of the resin. To consolidate a composite, resin cure or chemical reaction plays an essential role. Cure kinetics. Therefore, is necessary to quantify the extent of chemical reaction or degree of cure. It is also important to predict resin viscosity which can change due to chemical reaction during mold filling. There exists a heat transfer between the mold and the composite during mold filling and resin cure. Cure kinetics is also used to predict a temperature profile inside composite. In this study, a new scheme which can determine cure kinetics from dynamic temperature scaning was proposed. The method was applied to epoxy resin system and was verified by comparing measurements and predictions.

  • PDF

A Study on Capacity Selection of Accumulator by Mathematical Model in Hydraulic Regenerative Brake System (수학적 모델에 의한 유압 재생 브레이크 시스템의 축압기 용량 선정에 관한 연구)

  • 이재구;함영복;김도태;김성동
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.48-55
    • /
    • 2001
  • An accumulator in hydraulic systems stores kinetic energy during braking action, and then that control hasty surge pres-sure. This study suggests a method to select the capacity of accumulator to control surge pressure to a desired degree. The selection method is based upon a trial and error approach and computer simulation. A mathematical dynamic model of the system was derived and the parameters in the model were identified from experimental data. A series of computer simulation were done for the brake action. The results of the simulation work were compared with those of experiments. These results of the computer simular-tion and experiments show that the proposed method can be applied effectively to control the surge pressure of the hydraulic regenerative brake systems.

  • PDF