• Title/Summary/Keyword: Kinetic Energy

Search Result 1,867, Processing Time 0.026 seconds

Identification of progressive collapse pushover based on a kinetic energy criterion

  • Menchel, K.;Massart, T.J.;Bouillard, Ph.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.427-447
    • /
    • 2011
  • The progressive collapse phenomenon is generally regarded as dynamic. Due to the impracticality of nonlinear dynamic computations for practitioners, an interest arises for the development of equivalent static pushover procedures. The present paper proposes a methodology to identify such a procedure for sudden column removals, using energetic evaluations to determine the pushover loads to apply. In a dynamic context, equality between the cumulated external and internal works indicates a vanishing kinetic energy. If such a state is reached, the structure is sometimes assumed able to withstand the column removal. Approximations of these works can be estimated using a static computation, leading to an estimate of the displacements at the zero kinetic energy configuration. In comparison with other available procedures based on such criteria, the present contribution identifies loading patterns to associate with the zero-kinetic energy criterion to avoid a single-degree-of-freedom idealisation. A parametric study over a family of regular steel structures of varying sizes uses non-linear dynamic computations to assess the proposed pushover loading pattern for the cases of central and lateral ground floor column failure. The identified quasi-static loading schemes are shown to allow detecting nearly all dynamically detected plastic hinges, so that the various beams are provided with sufficient resistance during the design process. A proper accuracy is obtained for the plastic rotations of the most plastified hinges almost independently of the design parameters (loads, geometry, robustness), indicating that the methodology could be extended to provide estimates of the required ductility for the beams, columns, and beam-column connections.

Power Smoothening Control of Wind Farms Based on Inertial Effect of Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Kang, Jong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1096-1103
    • /
    • 2014
  • This paper proposes a novel strategy for attenuating the output power fluctuation of the wind farm (WF) in a range of tens of seconds delivered to the grid, where the kinetic energy caused by the large inertia of the wind turbine systems is utilized. A control scheme of the two-level structure is applied to control the wind farm, which consists of a supervisory control of the wind farm and individual wind turbine controls. The supervisory control generates the output power reference of the wind farm, which is filtered out from the available power extracted from the wind by a low-pass filter (LPF). A lead-lag compensator is used for compensating for the phase delay of the output power reference compared with the available power. By this control strategy, when the reference power is lower than the maximum available power, some of individual wind turbines are operated in the storing mode of the kinetic energy by increasing the turbine speeds. Then, these individual wind turbines release the kinetic power by reducing the turbine speed, when the power command is higher than the available power. In addition, the pitch angle control systems of the wind turbines are also employed to limit the turbine speed not higher than the limitation value during the storing mode of kinetic energy. For coordinating the de-rated operation of the WT and the storing or releasing modes of the kinetic energy, the output power fluctuations are reduced by about 20%. The PSCAD/EMTDC simulations have been carried out for a 10-MW wind farm equipped with the permanent-magnet synchronous generator (PMSG) to verify the validity of the proposed method.

Kinetic Energy Rate of the Rain Drops Based on the Impact Signal Analysis (충격 신호 분석에 기반한 우적의 운동 에너지율)

  • Moraes, Macia C. da S.;Tenorio, Ricardo S.;Sampaio, Elsa;Barbosa, Humberto A.;dos Santos, Carlos A.C.;Yoon, Hong-Joo;Kwon, Byung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.743-754
    • /
    • 2019
  • The erosive potential of precipitation can be evaluated by the kinetic energy transferred to the soil by the impact of the rain drop. A kinetic energy rate of the rain drops was estimated by the disdrometer classifying impact signals. This equation in the form of power presented an adjustment measure between the rain rate and rainfall quantity of 97% and 95% for continental and maritime rains, respectively. The exponent of the power equation, initially, shows no dependence on the type of rainfall. However, the multiplicative factor presented variation, which can be adjusted according to rainfall events. This equation was validated by the coefficient of determination, the average absolute error and the confidence error. The kinetic energy of precipitation, associated to certain types of soil, will allow the determination of the potential of the erosion caused by the rains.

Kinetic Parameter Estimation of Ru Catalyst for Steam Methane Reforming (증기 메탄 개질 반응의 Ru 촉매 Kinetic Parameter 예측)

  • JOO, CHONGHYO;KIM, MYUNGJUN;CHO, HYUNGTAE;LEE, JAEWON;KIM, JUNGHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.499-506
    • /
    • 2022
  • This study proposes kinetic parameters of Ru catalyst for steam methane reforming (SMR). First, extensive experiments are performed under different SMR conditions to evaluate performance of the catalyst in SMR. Second, a kinetic model is designed and developed for parameter estimation and validation using gPROMS. Finally, estimated parameters are fitted to the kinetic model and then, the model results are compared with the experimental data. The model results are in a good agreement with the experimental data.

Application of the Equivalent Point Method for Estimation of Kinetic Parameters (Kinetic Parameters 결정을 위한 Equivalent Point Method의 이용)

  • Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.582-589
    • /
    • 1990
  • A method for application of the equivalent time and temperature point for estimating kinetic parameters was proposed. The feasibility of the method was demonstrated with both theoretical and empirical kinetic data. The theoretical kinetic data were obtained from the arbitrarily chosen time-temperature data for three chemical reactions whose kinetics are well established. The experimental kinetic data were obtained for the acid (0.0005 N HCl) catalyzed hydrolysis of sucrose(2%). The activation energy and the frequency factor determined by the proposed method were $104.74{\pm}1.87kJ/mol\;and\;5.62{\times}10^{14}\;hr^{-1}$ respectively and the results agreed well with those obtained by a different method of kinetic parameter estimation, i.e. the linearly increasing temperature method.

  • PDF

Kinetic Data for Texture Changes of Foods During Thermal Processing

  • Lee, Seung Hwan
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.303-311
    • /
    • 2017
  • To automate cooking processes, quantitative descriptions are needed on how quality parameters, such as texture change during heating. Understanding mechanical property changes in foods during thermal treatment due to changes in chemical composition or physical structure is important in the context of engineering models and in precise control of quality in general. Texture degradation of food materials has been studied widely and softening kinetic parameters have been reported in many studies. For a better understanding of kinetic parameters, applied kinetic models were investigated, then rate constants at $100^{\circ}C$ and activation energy from previous kinetic studies were compared. The food materials are hardly classified into similar softening kinetics. The range of parameters is wide regardless of food types due to the complexity of food material, different testing methods, sample size, and geometry. Kinetic parameters are essential for optimal process design. For broad and reliable applications, kinetic parameters should be generated by a more consistent manner so that those of foods could be compared or grouped.

A Study on the Flow Characteristics in T-type Rectangular Duct (T-TYPE 사각덕트내의 유동특성 연구)

  • Lee, Haeng-Nam;Park, Gil-Moon;Lee, Duck-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.702-707
    • /
    • 2001
  • The characteristics of flow in dividing regions are precise, therefore their classification is very important not only in industry but also in hydrodynamics. By now, many studies of flow in dividing regions have been performed, but flow characteristics that use visualization in dividing regions have not been studied. The present study of the PIV and the CFD exhibit average velocity distributions, kinetic energy distributions and total pressure distributions etc of the total flow field due to the development of the accurate visualization optical laser and of optical equipment. Also, PIV is accurate with the flows characteristics of the dividing region as continuous analysis is done using input equipment. The study analyzes average velocity vector field, average kinetic energy, x-axis stress distributions, average and total pressure distributions of dividing regions with flow for visualization of the PIV and the CFD measurement in a dividing rectangular duct.

  • PDF

Turbulence Kinetic Energy Budgets of Tip Vortex Generated by a Fixed Wing (고정익 끝완류의 난류 운동에너지 분배 특성)

  • Bae, Hwang;Han, Yong Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1444-1452
    • /
    • 1999
  • The turbulence structure of e. tip vortex generated by e. fixed wing was investigated with the use of two-dimensional laser Doppler velocimetry. The velocity field, composed of circumferential end axial components, was measured on the vertical section to the vortex trail, located at 2C downstream from the wing tip in the incoming flow condition of $Re=2.24{\times}10^5$. A quasi 3-dimensional measurement technique by use of 2-dimensional LDV system was suggested for Reynolds stresses and the higher moments. The validity of this technique was confirmed with the uncertainty analysis. The budget of the turbulence kinetic energy was analyzed by those results in the radial direction of the vortex core. It is resulted that the production is to be very likely balanced with the dissipation in most range of the vortex core.

A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine (4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구)

  • 김철수;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging (영역분할조건평균법을 이용한 난류예혼합화염내 난류운동에너지 생성에 관한 연구)

  • Im, Yong Hoon;Huh, Kang Yul
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.15-23
    • /
    • 2003
  • The zone conditional two-fluid equations are derived and validated against DNS database of a premixed turbulent flame. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin f1amelets. The transverse component may be larger than the axial component for a distributed pdf of the flamelet orientation angle, while the opposite occurs due to redistribution of turbulent kinetic energy and flamelet orientation normal to the flow at the end of a flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface. Ad hoc modeling of some interfacial terms may be required for further application of the two-fluid model in turbulent combustion simulations.

  • PDF