• Title/Summary/Keyword: Kinetic Constant

Search Result 595, Processing Time 0.024 seconds

CALORIMETRIC INVESTIGATION OF SULFUR VULCANIZATION OF NATURAL RUBBER

  • Paik, Nam-Chul;Choi, Sei-Young;Suh, Won-Dong
    • Elastomers and Composites
    • /
    • v.21 no.1
    • /
    • pp.13-19
    • /
    • 1986
  • The effects of several vulcanizing accelerators on the determination of kinetic parameters of natural rubber vulcanizate was studied by DSC. Kinetic parameters were determined by means of the calculation procedures of Borchardt-Daniels and Oscillating Disk Rheometer (ODR) cure curve analysis, using both DSC exothermal thermogram and ODR cure curve. In order to examine the credibility in the DSC method the same compound which was und for DSC method was used for the comparison with the results of ODR data. Upon this method, kinetic rate constant (k), and Arrehenius parameter (Ea, ko, n) have been determined for rubber compounds via a new method using DSC thermogram and ODR cure curve. In the comparison of DSC and ODR results, kinetic parameters has shown good agreements between two results. Consequently, from the present studies, it is shown that the DSC thermoanalytical method can provide an alternate new method of kinetic study of rubber vulcanization.

  • PDF

Batch and Continuous Culture Kinetics for Production of Carotenoids by ${\beta}$-Ionone-Resistant Mutant of Xanthophyllomyces dendrorhous

  • Park, Ki-Moon;Song, Min-Woo;Kang, Seog-Jin;Lee, Jae-Heung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1221-1225
    • /
    • 2007
  • A ${\beta}$-ionone-resistant mutant strain isolated from the red yeast Xanthophyllomyces dendrorhous KCTC 7704 was used for batch and continuous fermentation kinetic studies with glucose media in a 2.5-1 jar fermentor at $22^{\circ}C$ and pH 4.5. The kinetic pattern of growth and carotenoid concentration in the batch fermentations exhibited a so-called mixed-growth-associated product formation, possibly due to the fact that the content of intracellular carotenoids depends on the degree of physical maturation toward adulthood. To determine the maximum specific growth rate constant (${\mu}_m$) and Monod constant ($K_s$) for the mutant, glucose-limited continuous culture studies were performed at different dilution rates within a range of $0.02-0.10\;h^{-1}$. A reciprocal plot of the steady-state data (viz., reciprocal of glucose concentration versus residence time) obtained from continuous culture experiments was used to estimate a ${\mu}_m$ of $0.15\;h^{-1}$ and $k_s$ of 1.19 g/l. The carotenoid content related to the residence time appeared to assume a typical form of saturation kinetics. The maximum carotenoid content ($X_m$) for the mutant was estimated to be $1.04\;{\mu}g/mg$ dry cell weight, and the Lee constant ($k_m$), which was tentatively defined in this work, was found to be 3.0 h.

Reaction Rates for the Oxidation of Pitch based Carbon Fibers in Air and Carbon Dioxide Gas

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.4 no.4
    • /
    • pp.185-191
    • /
    • 2003
  • Two types of carbon fiber based high modulus- and isotropic-pitch were exposed to isothermal oxidation in air and $CO_2$ gas and the weight change was measured by TGA apparatus. The kinetic equation was introduced $f=1-{\exp}(-at^b)$ and the constant b was obtained in the range of 1.02~1.68 for the isotropic fiber and obtained 0.91~1.93 for the high modulus fiber respectively. In considering the effect of the atmosphere for isothermal oxidation, the value of the constant b obtained in the carbon dioxide was higher than that obtained in the air. Therefore, it was found that the pitch based carbon fiber shows sigmoidal characteristic when it is oxidized in the carbon dioxide. In addition, it was also found that $k_f = 0.5$, which was reaction constant at f = 0.5, was a very useful parameter for evaluation of the oxidation reactivity of pitch based carbon fibers. According to the consideration, it is suggested that the conversion-time curves of the pitch based carbon fibers are correlated by normalized equation $f=1-{\exp}(-A{\tau}^B)$, where ${\tau}=t/t_f= 0.5$.

  • PDF

Dissolution of Chlorpheniramine Mallate (CMP) from Sustained-Release Tablets Containing CPM in the Coated Film Layer (핵정(核鐘)에 코팅된 필름층 중에 함유되어 있는 말레인산클로르페니라민의 방출특성)

  • Yu, Jei-Man;Shim, Chang-Koo;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.2
    • /
    • pp.89-95
    • /
    • 1990
  • Ethylcellulose-PEG 4000 film coated on core tablets was investigated as a potential drug delivery system for the controlled release of chlorpheniramine maleate (CPM). The kinetic analysis of the release data indicated that CPM release followed a diffusion-controlled model, where the quantity released per unit area is proportional to the square root of time. The effect of the film composition, CPM concentration, plasticizer concentration and CPM solubility on the release characteristics were examined. The release rate constant increased as CPM concentration increased. It also increased as the PEG 4000 content in the film increased above 10%(w/w), however, it decreased as the PEG 4000 content increased in the concentration range below 10%(w/w). The release rate constant was not affected by the coated weight on the core tablet. The film-coated tablets which contain CPM only in the coated film layer seemed to be a potential oral drug delivery system for the controlled release of CPM.

  • PDF

The Characteristics of the Dehydration Reaction and the Durability for the Thermal Decomposition in Na2B4O7·10H2O/Na2B4O7·5H2O System (Na2B4O7·10H2O/Na2B4O7·5H2O 계의 열분해 탈수반응 및 내구성 고찰)

  • Choi, Ho-Sang;Park, Young-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.885-888
    • /
    • 1999
  • This study was carried out to determine the reaction kinetic constant of the dehydration - thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ and to investigate the durability during the repeated use of a chemical heat-storage material and the reproducibility of reaction system. The order of the dehydration reaction was 1st-order. The reaction rate was directly proportional to a partial pressure difference of water steam. The kinetic constant was 0.27 and the reproducibility of dehydration reaction for a kinetic constant and a reaction order was excellent. The activity variation in the durability test of a chemical heat-storage material was within range of ${\pm}5%$ during the repeatedly use in several times.

  • PDF

Applicability of adsorption kinetic model for cation/anion for chitosan hydrogel bead (키토산비드를 이용한 양이온/음이온의 흡착모델 적용)

  • An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • Batch adsorption tests were performed to evaluate the applicability of adsorption kinetic model by using hydrogel chitosan bead crosslinked with glutaraldehyde (HCB-G) for Cu(II) as cation and/or phosphate as anion. Pseudo first and second order model were applied to determine the sorption kinetic property and intraparticle and Boyd equation were used to predict the diffusion of Cu(II) and phosphate at pore and boundary-layer, respectively. According to the value of theoretical and experimental uptake of Cu(II) and phosphate, pseudo second order is more suitable. On comparison with the value of adsorption rate constant (k), phosphate kinetic was 2-4 times faster than that of Cu(II) at any experimental condition indicating the electrostatic interaction between ${NH_3}^+$ and phosphate is dominated at the presence of single component. However, when Cu(II) and phosphate simultaneously exist, the value of k for phosphate was sharply decreased and then the difference was not significant. Both diffusion models confirmed that the sorption rate was controlled by film mass transfer at the beginning time (t < 3 hr) and pore diffusion at next time section (t > 6 hr).