• Title/Summary/Keyword: Kinetic Coefficient

Search Result 324, Processing Time 0.025 seconds

The effect of hexamethylenetetramine contents and cure properties on friction characteristics of phenolic resin (페놀수지의 마찰특성에 미치는 HEXA의 함량 및 경화도의 영향)

  • Kim, Dae-Kyeun;Jang, Ho;Yoon, Ho-Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.49-56
    • /
    • 1999
  • A material was formulated with Phenol novolac and HEXA only. The cure kinetics and thermal characteristics of phenol novolac with various HEXA contents were peformed by differential scanning calorimetry and thermal gravimetric analysis. All kinetic parameters of the curing reaction including the reaction order, activation energy, and rate constant were calculated and reported. The results indicate that the curing reaction goes through an autocatalytic kinetic mechanism. The friction and wear characteristics of this material were determined using friction material testing machine. The friction coefficient of phenol novolac with various HEXA contents was determined using the PV(pressure & velocity) factor. The most stable and highest friction coefficient with a various pressure and velocity condition was found at HEXA 10 wt.% material. The specific wear rate per unit sliding distance with a various HEXA contents was reported.

  • PDF

The Estimation of Bio-kinetic Parameters using Respirometric Analysis (산소이용률을 이용한 생물학적 동력학 계수 추정)

  • Choung, Youn-Kyoo;Kim, Han-Soo;Yoo, Sung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • In order to predict the performance of biological wastewater treatment plant, the kinetic parameters and stoichiometric coefficient must be known. The theories and experimental procedures for determining the biological kinetic parameters were discussed in this study. Respirometric analysis in the batch reactor was carried out for the experimental assessment of kinetic parameters. A simple procedure to estimate kinetic parameters of heterotrophs and autotrophs under aerobic condition was presented. The difficulties in the interpretation of COD and VSS measurements encouraged the conversion of respirometric data to growth data. Maximum specific growth rate, yield coefficient, half saturation constant and decay rate of heterotrophic biomass were obtained from OUR(Oxygen Uptake Rate) data. Maximum specific growth rate of autotrophic biomass was obtained from the increase of nitrate concentration. The aim of this paper is to estimate the kinetic parameters of heterotrophic and autotrophic biomass by means of the respirometric analysis of activated sludge behavior in the batch reactors. These procedures may be used for the activated sludge modeling with complex kinetic parameters.

  • PDF

Physical Properties of Rice Husk (왕겨의 물리적 성질)

  • Park S. J.;Kim M. H.;Shin H. M.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.229-234
    • /
    • 2005
  • Kinetic friction coefficient, bulk density, dynamic and static angle of repose, and terminal velocity of rice husk at the moisture range 7 to $23\%$ w.b. were determined. It could lead to better design and operation of the processing machinery and handling facilities. Friction coefficient was determined from the horizontal traction force measured by pulling the container holding a mass of rice husk on various plate materials. Dynamic angle of repose was calculated from the photos of bulk samples piled by gravity flow on a circular platform. Static angle of repose was determined by measuring the side angle of the bulk material which was left in a cylindrical container after natural discharge of the bulk sample through a circular hole in the bottom plate. Kinetic friction coefficients of rice husk were in the range of $0.254\~0.410,\;0.205\~0.520,\;0.229\~0.400,\;and 0.133\~0.420$ on PVC, mild steel, galvanized steel, and stainless steel, respectively. Bulk density, dynamic and static angle of repose, and terminal velocity were in the range of $91.7\~98.3$ $kg/m^3$, $40.2\~47.6^{\circ},\;52.8\~83.7^{\circ},$ and $1.36\~1.73$ m/s, respectively. These physical properties of rice husk increased linearly as the moisture content increased.

Some Physical Properties of Chopped Rice Straw (절단 볏짚의 물리적 성질)

  • 박승제;김명호
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 1998
  • This study was performed to determine the kinetic friction coefficient bulk density, dynamic and static angle of repose, and terminal velocity of the chopped rice straw in the moisture range of 8~23%, which could be used for better design and operation of the processing machinery and handling facilities. Friction coefficient was determined from the horizontal traction force measured by pulling the container holding the mass of rice straw on the various plate materials. Bulk density was measured with an apparatus consisting of a filling funnel and a receiving vessel. Dynamic angle of repose was calculated from the photos of bulk samples piled by gravity flow on a circular platform. Static angle of repose was determined by measuring the side angle of the bulk material which was left in the cylindrical container after natural discharge of the bulk sample through a circular hole in the bottom plate. Kinetic friction coefficients of rice straw on the PVC, mild steel, stainless steel, and galvanized steel were in the range of 0.303~0.434, 0.222~0.439, 0.204~0.448, and 0.206~0.407, respectively. and indicated linear increase with moisture content. The effects of moisture change on the friction coefficients were in the order of PVC, mild steel, galvanized steel, and stainless steel. Bulk density, dynamic and static angle of repose, and terminal velocity were in the range of 56.8~60.3 kg/m$^3$, 41.4~45.9$^{\circ}$, 94.4~100.8$^{\circ}$, and 1.07~4.48 m/s, respectively, and were increased linearly with the moisture content.

  • PDF

Motion of rigid unsymmetric bodies and coefficient of friction by earthquake excitations

  • Zadnik, Branko
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.257-267
    • /
    • 1994
  • Motions of an unsymmetric rigid body on a rigid floor subjected to earthquake excitations with special attention to coefficient of friction are investigated. Motions of a body in a plane are classified (Ishiyama 1980) into six types, i.e. (1) rest, (2) slide, (3) rotation, (4) slide rotation, (5) translation jump, (6) rotation jump. Based upon the theoretical and experimental research work special attention is paid to the sliding of a body. The equations of motions and the behavior of coefficient of friction in the time of floor excitation are studied. One of the features of this investigation is the introduction and estimation of the "time dependent" coefficient of friction. It has been established that the constant kinetic coefficient of friction $${\mu}(kin){\sim_\sim}0.8{\mu}(stat)$$ does not give the appropriate results. The method for the estimation of the friction coefficient variation during the time is given.

A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model (저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구)

  • 김명호;신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1940-1954
    • /
    • 1992
  • Fine grid computations were attempted to analyze the turbulent flows in the near wall low Reynolds number region and the numerical analyses were incorporated by a finite-volume discretization with full find grid system and low Reynolds number k-.epsilon. model was employed in this region. For the improvement of low Reynolds number k-.epsilon. model, modification coefficient of eddy viscosity $f_{\mu}$ was derived as a function of turbulent Reynolds number $R_{+}$ and nondimensional length $y^{+}$ from the concept of two length scales of dissipation rate of turbulent kinetic energy. The modification coefficient $f_{\epsilon}$ in .epsilon. transport equation was also derived theoretically. In the turbulent kinetic energy equation, pressure diffusion term was added in order to consider low Reynolds number region effect. The main characteristics of this low Reynolds number k-.epsilon. model were founded as : (1) In high Reynolds number region, the present model has limiting behavior which approaches to the high Reynolds number model. (2) Present low Reynolds number k-.epsilon. model dose not need additional empirical constants for the transport equations of turbulent kinetic energy and dissipation of turbulent kinetic energy in order to consider wall effect. Present low Reynolds number turbulence model was tested in the pipe flow and obtained improved results in velocity profiles and Reynolds stress distributions compared with those from other k-.epsilon. models.s.s.

Treatment of nitrobenzene-cotaminated Wastewater using Oxidation Reaction (산화제를 이용한 니트로벤젠 함유 폐수 처리)

  • 신진환;손종렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2002
  • This study explored for treatment processes by investigating the treatment efficiency and reaction mechanism through oxidation reaction using UV and $O_3$ as oxidant in compensate the wastewater containing nitrobenzene that is non biodegradable organic. Also by modeling these reactions, we try to step explanation of optimum reaction rate and reaction mechanism as the development of the computer program predictable the reaction rate by modeling the reaction. By using this model, after kinetic constant for each reaction from an experimental data is made an optimization and for hardly contribute to reaction rate in reaction kinetic equation is made an ignorance and suppose the simplified reaction mechanism, examined the propriety of computer simulation model and simplified reaction mechanism by comparing and inspecting the reaction kinetic constant and masstransfer coefficient. An investigation results for destructional treatment of nitrobenzene in the wastewater as non-biddegradable organic using UV, $O_3{\;}O_2{\;}H_2O_2-UV$ as oxidant.

Kinetic and Equilibrium Study of Lead (II) Removal by Functionalized Multiwalled Carbon Nanotubes with Isatin Derivative from Aqueous Solutions

  • Tahermansouri, Hasan;Beheshti, Marzieh
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3391-3398
    • /
    • 2013
  • The carboxylated multiwall carbon nanotubes (MWCNT-COOH) and functionalized with isatin derivative (MWCNT-isatin) have been used as efficient adsorbents for the removal of lead (Pb) from aqueous solutions. The influence of variables including pH, concentration of the lead, amount of adsorbents and contact time was investigated by the batch method. The adsorption of the lead ions from aqueous solution by modified MWCNTs was studied kinetically using different kinetic models. The kinetic data were fitted with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The sorption process with MWCNT-COOH and MWCNT-isatin was well described by pseudo-second-order and pseudo-first-order kinetics, respectively which it was agreed well with the experimental data. Also, it involved the particle-diffusion mechanism. The values of regression coefficient of various adsorption isotherm models like Langmuir, Freundlich and Tempkin to obtain the characteristic parameters of each model have been carried out. The Langmuir isotherm was found to best represent the measured sorption data for both adsorbent.

Remediation of Groundwater Contaminated with Zinc Using Permeable Reactive Barriers Containing Foundry Sands (주물사가 포함된 투수반응벽체(PRB)를 이용한 아연으로 오염된 지하수 처리기법 연구)

  • ;Benson, Craig H
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.159-167
    • /
    • 2002
  • Partition coefficients for zinc vary on a broad range depending on properties of the foundry sands (TOC, clay content, total iron content) and solution pH. Among these properties, solution pH was found to be the most important factor. Empirical equations were developed from batch tests to predict partition coefscients and rate constants as a function of foundry sand properties and solution pH. Rate constants obtained from batch (kinetic) tests and batch sorption tests were found to be comparable when the solution pHs were comparable.

Estimation of Kinetic Coefficient and Assimilated Nutrients Mass in SBR Process (연속회분식 반응 공정에서 동역학적 계수 및 미생물합성에 사용된 영양물질 산정)

  • Ji, Dae-Hyun;Shin, Sang-Woo;Lee, Kwang-Ho;Lee, Jae-Kune
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.607-612
    • /
    • 2007
  • In this study, we investigated the variations of the kinetic coefficients and Chemical Oxygen Demand (COD), N and P mass used for assimilation of a sequencing batch reactor (SBR) system with the variation of SRTs; SRTs of 7.5, 10.0, 12.5, 15.0 and 20.0 days were tested in one cycle of SBR operation to determine the optimum conditions for the operation of the SBR and estimate its COD, nitrogen and phosphorus removal efficiencies. The SBR system was operated under the conditions as follows: an operation time of 6 hours per cycle, a hydraulic retention time (HRT) of 12 hours, an influent COD loading of $0.4kg/m^3/day$, and an influent nitrogen loading of $0.068kgT-N/m^3/day$. The yield coefficient (Y) and decay rate coefficient ($k_d$) were estimated to be 0.4198 kgMLVSS/kgCOD and $0.0107day^{-1}$ by calculating the removal rate of substrate according to the variation of SRT. Considering total nitrogen amount removed by sludge waste process, eliminated by denitrification, and in clarified water effluent with reference to 150 mg/cycle of influent nitrogen amount, the percentage of nitrogen mass balance from the ratio of the nitrogen amount in effluent (N output) to that in influent (N input) for Runs 1~5 were 95.5, 97.0, 95.5, 99.5, and 95.5%, respectively, which is well accounted for, with mass balances close to 100%.