• Title/Summary/Keyword: Kinematics Analysis

Search Result 631, Processing Time 0.026 seconds

Kinematic Analysis of Multi Axis Shaking Table for Multi-Purpose Test of Heavy Transport Vehicle (고하중 차량의 다목적 테스트를 위한 다축 가진 테이블의 기구학 해석)

  • Jin, Jae-Hyun;Na, Hong-Cheoul;Jeon, Seung-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.823-829
    • /
    • 2012
  • An excitation table is commonly used for vibration and ride tests for parts or assemblies of automobiles, aircrafts, or other heavy systems. The authors have analyzed several kinematic properties of an excitation table that is under development for heavy transport vehicles. It consists of one table and 7 linear hydraulic actuators. The authors have performed mobility analysis, inverse kinematics, forward kinematics, and singularity analysis. Especially, we have proposed a fast forward kinematic solution considering the limited motion of the excitation table. On the assumption that the motion variables such as rotation angles and displacements are small, the forward kinematic problem is converted to the observer problem of a linear system. This provides a fast solution. Also we have verified that there are no singularity points in the working range by numerical analysis.

Forward kinematic analysis of a 6-DOF parallel manipulator using genetic algorithm (유전 알고리즘을 이용한 6자유도 병렬형 매니퓰레이터의 순기구학 해석)

  • 박민규;이민철;고석조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1624-1627
    • /
    • 1997
  • The 6-DOF parallel manipulator is a closed-kindmatic chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. Because of its advantage, the parallel manipulator have been widely used in many engineering applications such as vehicle/flight driving simulators, rogot maniplators, attachment tool of machining centers, etc. However, the kinematic analysis for the implementation of a real-time controller has some problem because of the lack of an efficient lagorithm for solving its highly nonliner forward kinematic equation, which provides the translational and orientational attitudes of the moveable upper platform from the lenght of manipulator linkages. Generally, Newton-Raphson method has been widely sued to solve the forward kinematic problem but the effectiveness of this methodology depend on how to set initial values. This paper proposes a hybrid method using genetic algorithm(GA) and Newton-Raphson method to solve forward kinematics. That is, the initial values of forward kinematics solution are determined by adopting genetic algorithm which can search grobally optimal solutions. Since determining this values, the determined values are used in Newton-Raphson method for real time calcuation.

  • PDF

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

Design, Implementation, and Control of Two Arms of a Service Robot for Floor Tasks (바닥작업이 가능한 양팔 서비스 로봇의 기구학 설계, 제작 및 제어)

  • Bae, Yeong Geol;Jung, Seul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.203-211
    • /
    • 2013
  • This paper presents the implementation and control of two arms of an indoor service robot for floor tasks. The robot arms are designed to have 6 degrees-of-freedom (DOF), but actually built to have 5 DOF. Forward and inverse kinematics of two arms are analyzed and simulated to confirm the kinematic analysis. Two arms are actually controlled based on the inverse kinematics. The right and left arms are separately controlled to follow different trajectories in order to make sure the functionality of both arms. Experimental studies are conducted to confirm the kinematic analysis and proper operation of two arms.

Comparison of the Flexion-Relaxation Ratio of the Hamstring Muscle and Lumbopelvic Kinematics During Forward Bending in Subjects With Different Hamstring Muscle Flexibility

  • Kim, Chang-ho;Gwak, Gyeong-tae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.1-10
    • /
    • 2017
  • Background: Flexion-relaxation phenomenon (FRP) was a term which refers to a sudden onset of myoelectric silence in the erector spinae muscles of the back during standing full forward flexion. Hamstring muscle length may be related to specific pelvic and trunk movements. Many studies have been done on the FRP of the erector spinae muscles. However, no studies have yet investigated the influence of hamstring muscle flexibility on the FRP of the hamstring muscle and lumbopelvic kinematics during forward bending. Objects: The purpose of this study was to examine the flexion-relaxation ratio (FRR) of the hamstring muscles and lumbopelvic kinematics and compare them during forward bending in subjects with different hamstring muscle flexibility. Methods: The subjects of two different groups were recruited using the active knee extension test. Group 1-consisted of 13 subjects who had a popliteal angle under $30^{\circ}$; Group 2-consisted of 13 subjects who had a popliteal angel above $50^{\circ}$. The kinematic parameters during the trunk bending task were recorded using a motion analysis system and the FRRs of the hamstring muscles were calculated. Differences between the groups were identified with an independent t-test. Results: The subjects with greater hamstring length had significantly less lumbar spine flexion movement and more pelvic flexion movement. The subjects with greater pelvic flexion movement had a higher rate of flexion relaxation during full trunk bending (p<.05). Conclusion: The results of this study suggest that differences in hamstring muscle flexibility might cause changes in people's hamstring muscle activity and lumbopelvic kinematics.

Trajectory tracking control system of unmanned ground vehicle (무인자동차 궤적 추적 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Kang, Chin-Chul;Kim, Gwan-Hyung;Tac, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1879-1885
    • /
    • 2017
  • This paper discusses the trajectory tracking system of unmanned ground vehicles based on predictive control. Because the unmanned ground vehicles can not satisfactorily complete the path tracking task, highly efficient and stable trajectory control system is necessary for unmanned ground vehicle to be realized intelligent and practical. According to the characteristics of unmanned vehicle, this paper built the kinematics tracking models firstly. Then studied algorithm solution with the tools of the optimal stability analysis method and proposed a tracking control method based on the model predictive control. The controller used a kinematics-based prediction model to calculate the predictive error. This controller helps the unmanned vehicle drive along the target trajectory quickly and accurately. The designed control strategy has the true robustness, simplicity as well as generality for kinematics model of the unmanned vehicle. Furthermore, the computer Simulink/Carsim results verified the validity of the proposed control method.

Role of Attentional Focus in Balance Training: Effects on Ankle Kinematics in Patients with Chronic Ankle Instability during Walking - A Double-Blinded Randomized Control Trial

  • Hyun Sik Chang;Hyung Gyu Jeon;Tae Kyu Kang;Kyeongtak Song;Sae Yong Lee
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.2
    • /
    • pp.62-72
    • /
    • 2023
  • Objective: Although balance training has been used as an effective ankle injury rehabilitation program to restore neuromuscular deficits in patients with chronic ankle instability, it is not effectively used in terms of motor learning. Attentional focusing can be an effective method for improving ankle kinematics to prevent recurrent ankle injuries. This study aimed to 1) evaluate the effects of attentional focus, including internal and external focus, and 2) determine a more effective focusing method for patients with chronic ankle instability to learn balance tasks. Method: Twenty-four patients with chronic ankle instability were randomly assigned to three groups (external focus, internal focus, and no feedback) and underwent four weeks of progressive balance training. The three-dimensional ankle kinematics of each patient were measured before and after training as the main outcomes. Ensemble curve analysis, discrete point analysis, and post hoc pairwise comparisons were performed to identify interactions between groups and time. Results: The results showed that (1) the external focus group was more dorsiflexed and everted than the internal focus group; (2) the external focus group was more dorsiflexed than the no feedback group; and (3) the no feedback group was more dorsiflexed than the internal focus group. Conclusion: Because dorsiflexion and eversion are ankle motions that oppose the mechanism of lateral ankle sprain, using the external focus method during balance training may be more effective in modifying these motions, thereby reducing the risk of ankle sprain.

Non-Steady Elastohydrodynamic Lubrication Analysis on Spur Gear Teeth

  • Kim, H.J.;Kim, Y.D.;Koo, Y.P.;Choi, H.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.81-82
    • /
    • 2002
  • A non-steady 3-dimensional elastohydrodynamic lubrication analysis was performed on the contacting teeth surfaces of involute spur gears. Kinematics of the gear and the pinion were taken into account to get accurate geometric clearance around the elastohydrodynamic lubrication region of the contacting teeth. Pressure and film thickness distribution for the whole contacting faces in lubricated condition at several time steps were obtained through the analysis. Besides the pressure spike at the outlet region, a representative phenomenon in elastohydrodynamic lubrication regime, the pressure at the inlet region was slight higher than that of the center region. The film thickness of non-steady condition was thicker than that of steady condition.

  • PDF

Analysis of human gait using inverse kinematics (역기구학을 이용한 보행 분석)

  • 최경암;정민근;염영일
    • Journal of the Ergonomics Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.3-14
    • /
    • 1994
  • In this study, the human gait trajectories during normal walking were synthesized using the inverse kinematics and optimization techniques. The synthesis is based on a gait model consisting of a torso and two legs. Each let has three segments: thigh, shank, foot, and has six degrees-of-freedom. In order to synthesize trajectories of this redundant system, the sum of angular displacements of articulating joints was selected as an objective function to be minimized. The proposed algorithm in this study is very useful for the analysis of human gait. For the gait analysis, the trajectories of four points in each leg should be measured. Hpwever, by using the algorithm, measuring the trajectories of two points is sufficient, and thus the experimental set-up can be simplified.

  • PDF