• 제목/요약/키워드: Kinematic parameters

검색결과 414건 처리시간 0.025초

병렬구조 로봇의 보정을 위한 보정 가능 변수 판별과 최적 자세 선정에 관한 연구 (Study on the Identifiable Parameters and Optimum Postures for Calibrating Parallel Manipulators)

  • 박종혁;김성관;압둘라우프;류제하
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1476-1481
    • /
    • 2003
  • Kinematic calibration enhances absolute accuracy by compensating for the fabrication tolerances and installation errors. Effectiveness of calibration procedures depends greatly on the measurements performed. This paper investigates identifiable parameters and optimum postures for four different calibration procedures - measuring postures completely with inverse kinematic residuals, measuring postures completely with forward kinematics residuals, measuring only the three position components, and restraining the mobility of the end-effector using a constraint link. The study is performed for a six degree-of-freedom fully parallel HexaSlide type parallel manipulator, HSM. Results verify that all parameters are identifiable with complete posture measurements. For the case of position measurements, one and for the case of constraint link, three parameters were found non-identifiable. Selecting postures for measurement is also an important issue for efficient calibration procedure. Typically, the condition number of the identification Jacobian is minimized to find optimum postures. Optimal postures showed the same trend of orienting themselves on the boundaries of the search space.

  • PDF

레이저 트래커를 이용한 Delta 병렬로봇의 기구학적 보정 (Kinematic Calibration of Delta Parallel Robot Using Laser Tracker)

  • 정성훈;최준우;김한성
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.947-952
    • /
    • 2021
  • In this paper, the simplified kinematic error model for Delta parallel robot is presented, which can enable the analytical forward kinematics essentially for kinematic calibration calculations instead of the numerical one. The simplified kinematic error model is proposed and the forward kinematics including the error parameters is analytically derived. The kinematic calibration algorithm of the Delta parallel robot with 90 degree arrangement using laser tracker and the experiment result are presented.

고속 식부 기구 설계를 위한 컴퓨터 시뮬레이션 프로그램 개발(I) -식부 궤적과 운동 분석- (Development of A Computer Simulation Program for the Design of High Speed Transplanting Mechanism(I) -Planting Loci and Motion Analysis-)

  • 박홍제;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제18권2호
    • /
    • pp.91-99
    • /
    • 1993
  • Kinematic analysis was made on a gear type high speed planting mechanism for riding-type rice transplanters. The kinematic equations thus derived were computer coded to simulate its motion characteristics such as a planting locus, velocities and accelerations of gears and planting knife, etc. Using the simulation program a sensitivity analysis of design parameters was also carried out to determine their effects on the planting performance. Of the design parameters the eccentricity of the gear was found most influential.

  • PDF

로봇 캘리브레이션을 위한 모델 파라미터의 관측성 연구 (A Study on Observability of Model Parameters for Robot Calibration)

  • 범진환;양수상;임생기
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.64-71
    • /
    • 1997
  • Objective of calibration is to find out the accurate kinematic relationships between robot joint angles and the position of the end-effector by estimating accurate model parameters defining the kinematic function. Estimating the model parameters requires measurement of the end-effector position at a number of different robot configurations. This paper studies the implication of measurement configurations in robot calibration. For selecting appropriate measurement configurations in robot calibration, an index is defined to measure the observability of the model parameters with respect to a set of robot configurations. It is found that, as the observability index of the selected measurement configurations increase the attribution of the position errors to the parameter errors becomes dominant while the effects of the measurement and unmodeled errors are less significant; consequently better estimation of parameter errors is expected. To demonstrate the implication of the observability measure in robot calibration, computer simulations are performed and their results are discussed.

  • PDF

축구 페널티킥에서 초보자와 숙련자의 3차원 운동학적 비교 (3-D Kinematics Comparative Analysis of Penalty Kick between Novice and Expert Soccer Players)

  • 신제민
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.13-24
    • /
    • 2005
  • The purpose of this study was to compare kinematic data between experts and novices, and identify difference kinematic parameters changing direction to kick in penalty kick of soccer play. Novice subjects were 5 high school students Who has never been experienced a soccer player, and expert subjects were 5 competitive high school soccer players. The 3-d angle was calculated by Euler's Angle by inertial axis and local axis with three-dimensional cinematography. Kinematic parameters in this study consisted of angles of knee joints, hip joints, lower trunk and upper trunk when the support foot was contacted on ground and kicking foot impacted the ball. The difference of angle of knee joints in the flexion/extension was insignificantly showed below $4{\sim}9^{\circ}$ in groups and directions of ball at the time of support and impact. But the difference of angle of hip joint was significant in groups and directions of ball at the time of support and impact. Specially the right hip joint of experts were more flexed about $12^{\circ}$($43.99{\pm}6.17^{\circ}$ at left side, $31.87{\pm}4.49^{\circ}$ at right side), less abducted about $10^{\circ}$ ($-31.27{\pm}4.49^{\circ}$ at left side, $-41.97{\pm}6.67^{\circ}$ at right side) at impact when they kicked a ball to the left side of goalpost. The difference of amplitude angle in the trunk was significantly shown at upper trunk not lower trunk. The upper trunk was external rotated about $30^{\circ}$ (novice' angle was $-16.3{\pm}17.08^{\circ}$, expert's angle was $-43.73{\pm}12.79^{\circ}$) at impact. Therefore the significant difference of kinematic characteristics could be found at the right hip joint and the upper trunk at penalty kick depending on the direction of kicking.

정상 성인의 운동 형상학적 보행 분석 (Analysis of Kinematic Parameters of Gait in Normal Subject)

  • 정화수
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.2989-2995
    • /
    • 2014
  • 본 연구는 정상 성인의 팔 움직임 종류에 따른 운동형상학적인 변화를 알아보기 위함이다. 45명의 정상 성인을 대상으로 네 가지 팔 움직임 종류인, 정상 팔 움직임 보행, 한 팔 움직임 보행, 두 팔 움직임 억제 보행, 파워 보행의 순서대로 실시하였다. 실험 대상자가 10m의 보행거리를 자연스럽게 걷는 동안 3차원 보행분석기인 Vicon동작 분석기의 6MX3카메라를 이용해서 측정을 하였다. 이 실험의 자료는 2010년 6월부터 8월까지 수집되었다. 팔 움직임에 따른 운동 형상학적 보행변수의 변화는 정상과 비교해 시상면에서 오른쪽 골반, 엉덩관절의 관절 운동범위, 관상면에서 골반, 엉덩관절, 허리부위에 관절 운동범위, 횡단면에서는 골반, 가슴부위, 허리부위의 관절 운동범위에서 차이를 나타냈다(p<.05). 본 연구의 결과 팔 움직임의 형태에 따라 보행을 하게 되면 운동 형상학적 변화를 나타내고, 이러한 연구 결과는 임상에서 정상인과 환자들의 보행 비교 자료로 사용될 수 있을 것이다.

DESIGN PROGRAM FOR THE KINEMATIC AND DYNAMIC CHARACTERISTICS OF THE BUS DOOR MECHANISM

  • KWON S.-J.;SUH M.-W.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.403-411
    • /
    • 2005
  • The bus is regarded as one of the most frequently used public transportation systems, the research and development on driving stability, safety, and convenience for drivers and passengers has tremendously increased in recent days. This paper investigated the design of the bus door mechanism composed of an actuator (or motor) and linkages. The bus door mechanism is divided into many types according to the coupling of the linkages and the driving system. The mathematical models of all types of door mechanism have been constructed for computer simulation. To design the bus door mechanism, we developed a simulation program, which automates the kinematic and dynamic analysis according to the input parameters of each linkage and the driving system. Using this program, we investigated the design parameters that affect the kinematic and dynamic characteristics of the bus door mechanism under various simulation conditions. In addition, simple examples are examined to validate the developed program.

굴삭기의 기구학적 최적설계와 성능해석 (Kinematic Optimal Design of Excavator with Performance Analysis)

  • 한동영;김희국;이병주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.617-622
    • /
    • 1994
  • In this paper, we perform a two-stage, kinematic optimal design for 3 degree-of-freedom excavator system which consists of boom, arm, and bucket. The objective of the first stage is to find the optimal joint parameters which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the first stage is to find the optimal link parameters which maximize the isotropic characteristic throughout the workspace. It is illustrated that performances of the optimized excavator are improved compared to those of HE280 excavator, with respect to the described performace index and maximum load handling capacity.

  • PDF

유전 알고리듬을 이용한 토션빔 현가장치의 기구학적 최적설계 (Kinematic Optimum Design of a Torsion-Beam Suspension Using Genetic Algorithms)

  • 옥진규;백운경;손정현
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.25-30
    • /
    • 2006
  • This study is about an optimum design to improve the kinematic and compliance characteristics of a torsion-beam suspension system. The kinematic and compliance characteristics of an initial design of the suspension was obtained through a roll-mode analysis. The objective function was set to minimize within design constraints. The coordinates of the connecting point between the torsion-beam and the trailing arm were treated as design parameters. Since the torsion-beam suspension has large nonlinear effects due to kinematic and elastic motion, Genetic Algorithms were employed for the optimal design. The optimized results were verified through a double-lane change simulation using the full vehicle model.

6자유도 측정 장치를 이용한 병렬 기구의 캘리브레이션 실험 결과 (Experimental Results on Kinematic Calibration of Parallel Manipulator using 6 DOF Measurement Device)

  • 압둘 라우프;아슬람 퍼베즈;김현호;류제하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.197-203
    • /
    • 2005
  • This paper presents kinematic calibration of parallel manipulators with partial pose measurements using a device that measures a rotation of the end-effector along with its position. The device contains an LVDT, a biaxial inclinometer, and a rotary sensor and facilitates automation of the measurement procedure. The device is designed in a modular fashion and links of different lengths can be used. The additional kinematic parameters required for the measurement device are discussed, kinematic relations are derived, and cost function is established to perform calibration with the proposed device. The study is performed for a six degree-of-freedom(DOF) fully parallel HexaSlide Mechanism(HSM). Experimental results show significant improvement in the accuracy of the HSM.

  • PDF