• 제목/요약/키워드: Kinematic interaction

검색결과 80건 처리시간 0.022초

기구학적 운동이 돼지 무릎 관절연골의 마찰계수 변화에 미치는 영향 (Effect of Kinematic Motion on Changes in Coefficients of Friction of Porcine Knee Joint Cartilage)

  • 김환;김충연;이권용;김대준;임도형
    • Tribology and Lubricants
    • /
    • 제29권1호
    • /
    • pp.46-50
    • /
    • 2013
  • In this study, the frictional behaviors of articular cartilage against a Co-Cr alloy in two types of kinematic motions were compared. Cartilage pins were punched from the femoral condyles of porcine knee joints, and Co-Cr alloy disks were machined from orthopedic-grade rods and polished to a surface roughness ($R_a$) of 0.002. Friction tests were conducted by using a pin-on-disk-type tribotester in phosphate buffered saline (PBS) under pressures of 0.5, 1, and 2 MPa. All tests were performed in the repeat pass rotational (ROT) and the linear reciprocal (RCP) sliding motions with the same sliding distance and speed of 50 mm/s. The coefficients of friction of the cartilage against the Co-Cr alloy increased with the sliding time in both kinematic motions for all contact pressures. The maximum coefficients of friction in RCP motion were 1.08, 2.82, and 1.96 times those in ROT motion for contact pressures of 0.5, 1, and 2 MPa, respectively. As the contact pressure increased, the coefficients of friction gradually increased in RCP motion, whereas they decrease and then increased in ROT motion. The interaction between the directional change of the shear stress and the orientation of collagen fiber in the superficial layer of the cartilage could affect the change in the frictional behaviors of the cartilage. A large difference in the coefficients of friction between the two kinematic motions could be interpreted as differences in the directional change of shear stress at the contact surface.

Analysis of side-plated reinforced concrete beams with partial interaction

  • Siu, W.H.;Su, R.K.L.
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.71-96
    • /
    • 2011
  • Existing reinforced concrete (RC) beams can be strengthened with externally bolted steel plates to the sides of beams. The effectiveness of this type of bolted side-plate (BSP) beam can however be affected by partial interaction between the steel plates and RC beams due to the mechanical slip of bolts. To avoid over-estimation of the flexural strength and ensure accurate prediction of the load-deformation response of the beams, the effect of partial interaction has to be properly considered. In this paper, a special non-linear macro-finite-element model that takes into account the effects of partial interaction is proposed. The RC beam and the steel plates are modelled as two different elements, interacting through discrete groups of bolts. A layered method is adopted for the formulation of the RC beam and steel plate elements, while a special non-linear model based on a kinematic hardening assumption for the bolts is used to simulate the bolt group effect. The computer program SiBAN was developed based on the proposed approach. Comparison with the available experimental results shows that SiBAN can accurately predict the partial interaction behaviour of the BSP beams. Further numerical simulations show that the interaction between the RC beam and the steel plates is greatly reduced by the formation of plastic hinges and should be considered in analyses of the strengthened beams.

자동차 공정 시뮬레이션의 3D 지그 키네마틱 정보 모델링을 위한 효율적 방법 연구 (A Study of Efficient Method of 3D JIG Kinematic Modeling for Automobile Process Simulation)

  • 고민석;곽종근;조희원;박창목;왕지남;박상철
    • 한국CDE학회논문집
    • /
    • 제14권6호
    • /
    • pp.415-423
    • /
    • 2009
  • Because of the fast changing car design and increasing facilities, manufacturing process of cars is getting more complex now a days. Particularly, car manufacturing system that consist of automated devices, applies various simulation techniques to validate device motion and detect collision. To cope with this problem, traditional manufacturing system deployed test-run with the real devices. However, increased computing power in a contemporary manufacturing system changes it into realistic 3D simulation environment. Similarly, managed device data that was generated using 2D traditionally, can be converted to 3D realistic simulation. The existing problem with 3D simulation is disjoint data interaction between different work stations. Consequently, JIGs, fixing the car part accurately, are changed according to fixing position on the part or a part shape properties. In practice, the 3D JIG data has to be managed according to kinematic information, but not of its features. However, generating kinematic information to the 3D model repeatedly according to frequent change in part is not explained in current literatures. To fill this knowledge gap, this paper suggests an improving method of rendering 3D JIG kinematics information to simulation model. Thereafter, it shows the result of implementation.

Road Traffic Control Gesture Recognition using Depth Images

  • Le, Quoc Khanh;Pham, Chinh Huu;Le, Thanh Ha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2012
  • This paper presents a system used to automatically recognize the road traffic control gestures of police officers. In this approach,the control gestures of traffic police officers are captured in the form of depth images.A human skeleton is then constructed using a kinematic model. The feature vector describing a traffic control gesture is built from the relative angles found amongst the joints of the constructed human skeleton. We utilize Support Vector Machines (SVMs) to perform the gesture recognition. Experiments show that our proposed method is robust and efficient and is suitable for real-time application. We also present a testbed system based on the SVMs trained data for real-time traffic gesture recognition.

  • PDF

가상환경과 촉감적 상호작용을 위한 햅틱 디바이스 (Haptic Device For Haptic Interaction With Virtual Environment)

  • 정영훈;이재원;주해호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.27-30
    • /
    • 2000
  • In this paper, we determine the design criteria of haptic device considering the human haptic system and determine the design specifications. We developed a new 2DOF haptic device based on the specifications. It has the wide workspace, statically-balanced, constant inertia matrix, well-conditioned Jacobian matrix and so on. There also is not singularity point within workspace of the device. We show that it has better performance than other 2DOF haptic device in the many aspects.

  • PDF

말뚝기호의 내진해석에 대한 연구 (A Study on Seismic Response of Pile Foundations for Aseismic Design)

  • 이인모;오진기
    • 한국지반공학회지:지반
    • /
    • 제6권3호
    • /
    • pp.13-30
    • /
    • 1990
  • 본 연구에서는 깊은 기초의 내진설계에 적용하기 위해, 지진하중에 의한 말뚝기초의 응답을 산출하여 비교, 검토하였다. 본 연구에서 사용된 해석 방법은 Subgrade Reaction Theory 및 탄성해석법과 같은 유사정적 해석방법, Prakash및 Gazetas가 각각 제안한 동적 해석방법이며, 예제해석을 통해 말뚝의 최대 상대변위 및 최대 휨모멘트를 위의 각 방법을 이용해서 산출하였고, 그 결과를 각각 비교하였다. 또한 말뚝의 군효과를 근사적으로 고려하여 Novak에 의해 수행된 실험 결과와 비교하였다. 해석결과를 분석해 볼 때 Kaynia와 Kausel이 제안한 동적 Group Interaction Factor Approach 에 의한 땅법 및 Gazetas가 제안한 방법의 최대 상대변위는 실측치와 부합하게 산정되었으며, Prakash 가 제안한 방법과 정적 Group Interaction Factor Approach에 의한 변위 및 휨모멘트는 과대평가되었다. 그러므로, 말뚝의 내진설계시에 동적 Group Interaction Factor Approach와 결합한 유사정적해석 을 사용하고 Gazetas가 제안한 동적방법에 의해 이를 검토하는 것이 바람직하다.

  • PDF

경계면 요소를 고려한 지하 철근콘크리트 구조물의 지진해석 (Seismic Analysis of Underground RC Structures considering Interface between Structure and Soil)

  • 남상혁;변근주;송하원;박성민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.87-92
    • /
    • 2000
  • The real situation of an underground reinforced concrete(RC) structure with the surrounding soil medium subjected to seismic load is quite difficult to be simulated through an expensive work and, even if it is possible to arrange such an experiment, it will be too expensive. So development of analytical method can be applied usefully to seismic design and seismic retrofit through an analysis of seismic behavior and seismic performance evaluation. A path-dependent constitutive model for soil that can estimate the response of soil layer is indispensible for dealing with kinematic interaction of RC/soil entire system under seismic loads. And interface model which deals with the dynamic interaction of RC/soil entire system is also necessary. In this study, finite element analysis program that can consider path-dependent behavior of RC and soil, and interfacial behavior between RC and soil is developed for rational seismic analysis of RC/soil entire system. Using this program, nonlinear behavior of interface between RC and soil is analyzed, and the effect of interfacial behavior to entire system is investigated.

  • PDF

흐름의 영향을 받는 파랑 그룹의 비선형 집중 (Nonlinear Focusing Wave Group on Current)

  • 쥬리언 투보울;에핌 페리높스키;크리스티안 카리프
    • 한국해안해양공학회지
    • /
    • 제19권3호
    • /
    • pp.222-227
    • /
    • 2007
  • 심해에서 생성된 최극해파가 파랑과 상호작용하는 현상에 대한 연구를 수행하였다. 이러한 파랑은 분산집중을 이용하여 산정하였다. 이러한 과정은 선형 및 비선형 방정식의 해를 구하여 얻을 수 있다. 상호작용에서 비선형성의 역할을 강조하였다.

구조물 내진설계를 위한 기초지반체계 동특성에 관한 연구 (Study on the Dynamic Characteristics of Foundation-Soil System for the Seismic Analysis of Structures)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제1권3호
    • /
    • pp.1-10
    • /
    • 1997
  • 구조물 동적거동이 지반과 기초 특성에 따라 영향을 받는다는 것은 인식되었지만, 구조물 내진설계를 위한 설계규준이 지반의 본질적인 복잡성과 기초-지반체계에 대한 체계적인 연구부족으로 지반특성을 부분적으로만 반영하고 있어 불안전하거나 너무 안전한 결과를 초래한다. 이 연구에서는 전단파속도, 지반깊이, 기초 근입깊이 및 말뚝기초의 영향을 평가하여 구조물 내진해석을 위한 기초-지반체계의 운동학적 상호작용 영향을 고찰하였으며, 지반과 기초 특성을 고려한 합리적 내진해석을 위해 지반체계에 대한 수정된 분류기준을 제안하였다. 말뚝기초를 포함한 중형이나 대형 묻힌기초의 경우, 지초-지반체계의 운동학적 상호작용 영향을 고려하기 위해서는 기토밑 지반깊이를 최소한 60m 까지 고려해야하고, 말뚝유무에 관계없이 기초-지반체계의 회전운동도 구조물 내진해석에 포함되어야 한다.

  • PDF

Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.645-656
    • /
    • 2018
  • Importance of procuring adequate knowledge about the mechanical behavior of double-layered graphene sheets (DLGSs) incensed the authors to investigate wave propagation responses of mentioned element while rested on a visco-Pasternak medium under hygro-thermal loading. A nonlocal strain gradient theory (NSGT) is exploited to present a more reliable size-dependent mechanical analysis by capturing both softening and hardening effects of small scale. Furthermore, in the framework of a classical plate theory the kinematic relations are developed. Incorporating kinematic relations with the definition of Hamilton's principle, the Euler-Lagrange equations of each of the layers are derived separately. Afterwards, combining Euler-Lagrange equations with those of the NSGT the nonlocal governing equations are written in terms of displacement fields. Interaction of the each of the graphene sheets with another one is regarded by the means of vdW model. Then, a widespread analytical solution is employed to solve the derived equations and obtain wave frequency values. Subsequently, influence of each participant variable containing nonlocal parameter, length scale parameter, foundation parameters, temperature gradient and moisture concentration is studied by plotting various figures.