• Title/Summary/Keyword: Kinematic Variables

Search Result 329, Processing Time 0.025 seconds

Kinematic analysis of skill between flexed and extended type of knee during Jigeo-Cha-Gi in Taekwon-Do (태권도 찍어차기의 무릎편 유형과 구부린 유형의 운동학적 비교분석)

  • Kim, Dong-Kyu;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.25-42
    • /
    • 2005
  • The study was to investigate kinematic difference between flexed and extended type of knee during Jigeo-Cha-Gi in Taekwon-Do. For this subjects participated were consisted of weights of fin (1), bantam (1) and welter class(1) of male 3 national representative level skilled in two type(flexed and extended type) of Jigeo-Cha-Gi. 3D cinematography analysis was performed for motion analysis and Kwon 3D ver. 3.1) was used for 3D coordinates & analysis variables calculation. In Temporal variable there was no significant difference statistically in all phases & total elapsed time between flexed and extended type, but flexed type was delayed more 0.016 sec than extended type. In displacement of COG there was significant difference in level of p<.05 showing longer mean 6.13 cm in case of flexed type than extended type in displacement of COG during all phase and too significant difference in level of p<.01 showing longer mean 4.4 cm in case of flexed type than extended type in displacement of COG in follow through phase. In velocity of COG there was significant difference in level of p<.001 showing higher mean 15.53cm/s in case of flexed type than extended type in velocity of COG(Y direction) during targeting phase and peak velocity(Y) was more fast 8.74 cm/s in extended type than flexed type. In velocity of leading leg in forward direction(Y) there was significant difference in level of p<.05 showing higher thigh mean value in case of flexed type than extended type but showing higher foot mean value in extended type at level of p<.001 than flexed type in velocity of COG(Y direction). In velocity of leading leg in vertical direction(Z) there was no significant difference in the second & third phase in case of vertical velocity level, but momentum transferred efficiently form proximal to distal endpoint. In front-back & right-left orientation angle of trunk there was possibility of more stable Jigeo-Cha-Gi in extended than flexed type by decreasing in right-left orientation angle of trunk. In relative angle of lower leg(hip, knee, ankle) there was significant difference in level of p<.001 showing longer mean 32.74 deg. in case of flexed type than extended type in hip joint during the second phase but maintained insufficient extended knee of mean 168 deg. in targeting phase.

3-D Kinematic Analysis According to Open Stance Patterns During Forehand Stroke in Tennis (테니스 포핸드 스트로크 동안 오픈스탠스 조건에 따른 3차원 운동학적 분석)

  • Choi, Ji-Young;Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.161-173
    • /
    • 2005
  • Recently among several tennis techniques forehand stroke has been greatly changed in the aspect of spin, grip and stance. The most fundamental factor among the three factors is the stance which consists of open, square and closed stance. The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle according to open stance patterns during forehand stroke in tennis. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVlEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and racket head angle were defined 1. In three dimensional maximum linear velocity of racket head the X axis showed $11.41{\pm}5.27m/s$ at impact, not the Y axis(horizontal direction) and the z axis(vertical direction) maximum linear velocity of racket head did not show at impact but after impact this will resulted influence upon hitting ball It could be suggest that Y axis velocity of racket head influence on ball direction and z axis velocity influence on ball spin after impact. the stance distance between right foot and left foot was mean $74.2{\pm}11.2m$. 2. The three dimensional anatomical angular displacement of shoulder joint showed most important role in forehand stroke. and is followed by wrist joints, in addition the movement of elbow joints showed least to the stroke. The three dimensional anatomical angular displacement of racket increased flexion/abduction angle until the impact. after impact, The angular displacement of racket changed motion direction as extension/adduction. 3. The three dimensional anatomical angular displacement of trunk in flexion-extension showed extension all around the forehand stroke. The angular displacement of trunk in adduction-abduction showed abduction at the backswing top and adduction around impact. while there is no significant internal-external rotation 4. The three dimensional anatomical angular displacement of hip joint and knee joint increased extension angle after minimum of knee joint angle in the forehand stroke, The three dimensional anatomical angular displacement of ankle joint showed plantar flexion, internal rotation and eversion in forehand stroke. it could be suggest that the plantar pressure of open stance during forehand stroke would be distributed more largely to the fore foot. and lateral side.

Effect of Knee Joint Injury on Biomechanical Factors during the Uchi-mata (허벅다리걸기 시 무릎 관절 부상이 운동역학적 요인들에 미치는 영향)

  • Hyun Yoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.642-649
    • /
    • 2023
  • The purpose of this study was to analyze the effects of knee joint injury experiences of judo players on kinematic factors and center of pressure factors during uchimata. Among right-handed male college judo players specializing in uchimata, 13 people who had a knee joint injury experience(age, 20.69.1±0.75 years; height, 172.85±4.81 cm; body mass, 74.92±5.51 kg; and career, 8.92±0.95 years) and 13 people who did not have a knee joint injury experience(age, 21.08.1±0.76 years; height, 172.54±6.32 cm; body mass, 76.62±9.09 kg; and career, 9.46±0.94 years) within the last 2 years were divided into two groups and participated as subjects. The two groups were evaluated for differences in ankle, knee, and hip joint angle variables, COP range, and velocity components during uchimata. As a result of the study, the EIG group showed smaller values in the knee joint flexion angle at E3 and the hip joint extension angle at E4 during uchimata than the NIG group. In addition, the EIG group showed lower values in the range of motion of the COP and forward movement velocity of the COP in the one-leg support phase than the NIG group.

Non-Local Plasticity Constitutive Relation for Particulate Composite Material Using Combined Back-Stress Model and Shear Band Formation (비국부 이론을 이용한 입자 강화 복합재 이중후방응력 소성 구성방정식 모델 및 전단밴드 분석)

  • Yun, Su-Jin;Kim, Shin Hoe;Park, Jae-Beom;Jung, Gyoo Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1057-1068
    • /
    • 2014
  • This paper proposes elastic-plastic constitutive relations for a composite material with two phases-inclusion and matrix phases-using a homogenization scheme. A thermodynamic framework is employed to develop non-local plasticity constitutive relations, which are specifically represented in terms of the second-order gradient terms of the internal state variables. A combined two back-stress evolution equation is also established and the degradation of the state and internal variables is expressed by continuum damage mechanics in terms of the damage factor. Then, deformation localization is analyzed; the analysis results show that the proposed model yields a wide range of shear band formation behaviors depending on the evolution of the specific internal state variables. The analysis results also show good agreement with the results of simplified Rice instability analyses.

Kinematical Analysis of Woman Javelin Throwing (창던지기 동작의 kinematic적 특성분석)

  • Lee, Jong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.345-359
    • /
    • 2002
  • The purpose of the study was to provide the fundamental data to instruct athletes through the analysis athletes' movement in javelin. Three athletes in the level of national representative were participated in this study. The study analyzed kinematic variables(lead foot and releasing javelin) through 3-D analysis and obtained the following results. 1. During withdrawal, it is important to maintain of running horizontal velocity. 2. It was showed that throng average height was $84{\pm}3.3%$ and javelin adequative degree, Among the athletes, $S_2$ who had the best record was released the javelin with the fast velocity, but throw the javelin with the less releasing velocity. 3. $S_2$ released after lead foot were completely landed and therefore it is no problem in a kinematic aspect. However, $S_1$ angle was too small. it caused increase of release velocity to be prevented. 4. $S_2$ showing the best result indicated shorter in duration time. Generally, the shorter duration time in release phase showed the longer release distance. Especially $S_1$ and $S_3$ showing the worse result indicated the longer duration time in preparatory phase, causing the breakup of force. Therefore to improve the record, it should be decreased the duration time in preparatory phase. 5. Compared with $S_1$ and $S_3$, $S_2$ showing the best record indicated the higher velocity in center of mass, trunk, upper arm, lower arm and hand That is the higher velocity of upper arm at release leaded the better velocity transfer from upper arm to following lower arm and hand, these action should be considered to be helpful of better record. According to the above conclusion, when the athletic leaders cauch athletes, they should focus on maintaining knee angle, upper body and hip angle in a previous stage of release and throwing angle, throwing height, throwing velocity in a release stage.

Kinematic Analysis of Airborne Movement of Dismount from High Bar(I) (철봉 내리기 공중 동작의 운동학적 분석(I))

  • Choi, Ji-Young;Kim, Youg-Ee;Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.159-177
    • /
    • 2002
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle and the angular velocity of the air born phase and understand the control mechanism of the high-bar movement, the somersault, the double somersault, the double somersault with full twist. For this study seven well trained university gymnastic volunteered, Zatsiorky and Seluyanov(1983, 1985)'s sixteen segment system anatomical model was used for this study. For the movement analysis three dimensional cinematographical method(Arial Performance Analysis System : APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 5.1 graphical profromming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and angular velocity were defined. As a result of this study 1. As the rotation of the body increased in the air born phase the projection angle of the CM of the total increased, this resulted the increased of the max hight of the CM. 2. In three dimensional angular velocity the Z axis(vertical direction) projection angular velocity increased as the rotation of the body increased in the airborn phase, but the Y axis and the X axis projection angular velocity did not show significant differences. 3. As the rotation of the body increased in the air born phase the angular movement of the shoulder and the hip showed significant change. These movement act as the starter in the preparation phase. 4. The somersault angle, the twist angle, the tilt angle of the upper body related to the global reference frame in the releas phase the average somersault angle of the three types of high-bar movement was $57.7^{\circ}$, $38.8^{\circ}$, $39.7^{\circ}$, the average tilt angle was $-1.5^{\circ}$, $-5.4^{\circ}$, $-8.4^{\circ}$, the average twist angle was $13.4^{\circ}$, $10.6^{\circ}$, $23.3^{\circ}$. This result showed that the somersault with full twist had the largest movement.

The Effects of Obstacle Height on the Stepping Over Gait in Parkinson's Patients (장애물 높이가 파킨슨 환자들의 장애물 보행에 미치는 영향)

  • Kim, Mi-Young;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.11-17
    • /
    • 2008
  • Falls associated with tripping over an obstacle can be dangerous, yet little is known about the strategies used for stepping over obstacles by Parkinson's patients. The purpose of this study was to investigate stepping over gait characteristics according to obstacle height in Parkinson's patients. The gait of 7 Parkinson's patients was examined during a 5.0 m approach to, and while stepping over, obstacles of 0, 2.5, 5.2, and 15.2 cm. Only five Parkinson's patients were able to clear all obstacles successfully; as such, only their data were analyzed. A one-way ANOVA for repeated measures was employed for selected kinematic variables to analyze the differences of the height of four obstacles. The results showed significant differences between obstacle height and: approaching speed (AS), foot clearance from the obstacle(FC), and step width (SW). The results showed no significant differences between obstacle height and: crossing speed (CS), toe distance (TD), and heel distance (HD). This strategy tends to reduce the risk of toe contact with the obstacle. Parkinson's patients were stepping over the obstacle slowly, stably and inefficiently.

Mechanical Analysis of throw motion in Bowling (볼링투구동작의 운동역학적 분석(II))

  • Lee, Kyung-Il
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.173-191
    • /
    • 2002
  • The purpose of this study was defined efficient throw motion pattern to obtain the quantitative data and to achieve successful bowling through kinetic - kinematic variables on the throw motion. Subject of group composed of three groups : Higher bowlers who are two representative bowlers with 200 average points and one pro-bowler. Middle bowlers who are three common persons with 170 average points. Lower bowler who are three common persons with 150 average points. Motion analysis on throw motion in three groups respectively has been made through three-dimension cinematography using DLT method. Two high-speed video camera at operating 180 frame per secondary. One-way ANOVA has been used to define variable relations. Analyzed result and conclusion are the following : The displacement of back of the hand must have wider difference of each right-left displacement to increase the spin of the ball. In high bowlers group, difference between the front-rear position of back of the hand in case of success and that in case of failure in follow throw is 0.17m. That is to say, momentum in case of success come to increase greatly, compared with that in case of failure. To increase the spin of the ball, the potential difference should be narrower in follow through. In case of the high bowlers, the velocity of the front-rear direction of the back of the hand has been the fastest both in release and follow through, compared with those in other groups, which has contributed to increasing the spin force of the ball. The orders in the resultant velocity of the back of the hand has shown the this : the finger tip$\rightarrow$the back of the hand$\rightarrow$wrist.These orders made the proximal segment support the distal segment. The distal segment has provided the condition to accelerate the velocity. In case of failure, the suddenly increased velocity has caused the failure in the follow through. Acutely flexing the angle of the back of the hand has contributed to lifting to increase the spin of the ball.

An analysis angular movement and performance time during handspring salto forward stretched (핸드스프링 몸펴 앞공중1회 비틀기 동작의 소요시간 및 각운동량 분석)

  • Kwon, Oh-Seok;Yoon, Yang-Jin;Seo, Kuk-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.229-244
    • /
    • 2002
  • The purpose of this study were a two-fold: (1) to analyze event and phase of handspring salto forward stretched with turn; (2) to know the differences in the kinematic variables between two groups. A Kwon3D program served for the estimation of this study. The group was divided into three National representative and three well-trained calisthenics in this study. The results of this study revealed that (1) the forward somersault performance was increased when duration time in the air was long during the salto forward stretched that the duration time of Handspring is short, the pressure at takeoff is high, the stride is large, and hands are supporting on the ground quickly; (2) comparing the angular movement of anterior and posterior y axis and vertical z axis, the angular movement of right and left $\times$ axis was higher during the performance. As a result, the national representative players showed better performance in Handspring salto forward stretched with turn.

The Biomechanical Analysis of Two and Half Rotation Technic of Penche in Rhythmic Gymnastics (리듬체조 퐁쉐 2회전 1/2턴 기술의 역학적 분석)

  • Seo, Se-Mi;Ryu, Ji-Seon;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.269-279
    • /
    • 2011
  • This study was analyzed the characteristics on the stability of posture while conducting a through two and half rotation technic of pench$\acute{e}$ in rhythmic gymnastics. Two rhythmical gymnastics player(LKH and SSJ) who is a member of the national team were selected, and for obtain the kinematic and kinetic variables were used a ProReflex MCU 240 infrared camera(Qualisys, Sweden) and a Type9286A force platform(Kistler, Switzerland). The mechanical factors were computed by using Visual3D program and Matlab R2009a. During the landing and rotation phase the results showed following characteristics; 1) In medial-lateral and horizontal displacement of the support foot, LKH showed smaller movement than SSJ, but SSJ showed smaller movement than LKH in swing foot. LKH showed bigger movement in medial-lateral axis of COP and vertical axis of COG, but SSJ showed bigger movement in horizontal axis of COP and medial-lateral axis of COG. 2) SSJ showed bigger maximum horizontal and vertical velocity at P1 and P2 than LKH. 3) In the inclination angle of COP and COG, SSJ showed smaller change than LKH, but within medial-lateral tilt of the shoulder, LKH performed rotation motion in horizontal position than SSJ. There was no differences in each force components during rotation, but on landing phase, the results showed a characteristic that SSJ exerted bigger breaking force and vertical force than LKH.