• Title/Summary/Keyword: Kinematic Motion

Search Result 852, Processing Time 0.029 seconds

A Method for Creating Natural Animation by Interaction with Operators

  • Lee, Ji-Hong;Kim, Sung-Su
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.117.3-117
    • /
    • 2001
  • This paper deals with a method for creating animation by interaction with animation operators. Operators are able to edit/transform any given motion data to more natural animations by the motion editing method proposed in this paper. The proposed technique is especially useful when some paris of character structure are changed. The system to be proposed is designed to fully utilize the experience of animation operators as well as to accomodate semi-automation process with spline interpolation. An example for retargeting a given motion data to a new character of dramatically changed kinematic structure.

  • PDF

Dynamics of multibody systems with analytical kinematics (해석적인 기구학을 이용한 다물체계의 동력학해석)

  • 이돈용;염영일;정완균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.289-292
    • /
    • 1994
  • In this paper, the equations of motion are constructed systematically for multibody systems containing closed kinematic loops. For the displacement analysis of the closed loops, we introduce a new mixed coordinates by adding to the reference coordinates, relative coordinates corresponding to the degrees of freedom of the system. The mixed coordinates makes easy derive the explicit closed form solution. The explicit functional relationship expressed in closed form is of great advantages in system dimension reduction and no need of an iterative scheme for the displacement analysis. This forms of equation are built up in the general purpose computer program for the kinematic and dynamic analysis of multiboty systems.

  • PDF

Input Ground Motion for the Seismic Analysis of Embedded Structures (반지하구조물 내진설계를 위한 지반거동)

  • 김용석
    • Computational Structural Engineering
    • /
    • v.1 no.2
    • /
    • pp.91-100
    • /
    • 1988
  • 최근 구조물과 지반간의 상호작용이 원자력 발전시설, 해상구조물, 기계기초 등에 대한 내진설계시 매우 중요하다는 것이 일반화되고 있다. 그러나 지금까지 구조물 내진설계시 이러한 구조물이나 지반의 특성이 무시됐었다. 내진설계상 구조물 밑에 있는 지반에 의한 세가지 주된 영향은 Soil Amplification, Kinematic Interaction과 Inertial Interaction이다. 이 논문에서는 반지하구조물 내진설계시 필요한 지반거동을 Soil Amplification과 Kinematic Interaction을 고려하여 구하였으며, 1971년 San Fernando 지진기록으로부터 그 특성을 실제적으로 입증하였다.

  • PDF

The Effects of Initiation Side on Gait Symmetry in the Stroke Patients

  • Shin, Hwa-Kyung;Noh, Dae-Yong
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.6
    • /
    • pp.399-404
    • /
    • 2013
  • Purpose: To investigate the effects of initiation side on gait symmetry in the chronic stroke patients. Methods: Twenty one patients with independent gait after stroke were divided into the paretic-leg gait initiation group (PLI) and the nonparetic-leg gait initiation group (NPLI). The symmetry ratio (SR) was calculated from of the spatiotemoral and kinematic parameter which measured by 3D motion analysis. Results: In the spatiotemporal variables, SR-step length and SR-velocity was significantly different between groups (p<0.05). In the kinematic variables, SR-TOAA and SR-SwPAA of the hip joint was significantly different between groups (p<0.05). Conclusion: We suggest that the initiating leg may influence on the gait symmetry of stroke patient These results will be a helpful reference in hemiplegic gait training or intervention.

A Systematic Formulation for Dynamics of Flexible Multibody Systems (탄성 다물체계의 체계적인 동역학적 해석)

  • 이병훈;유완석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2483-2490
    • /
    • 1993
  • This paper presents a systematic formulation for the kinematic and dynamic analysis of flexible multibody systems. The system equations of motion are derived in terms of relative and elastic coordinates using velocity transformation technique. The position transformation equations that relate the relative and elastic coordinates to the Cartesian coordinates for the two contiguous flexible bodies are derived. The velocity transformation matrix is derived systematically corresponding to the type of kinematic joints connecting the bodies and system path matrix. This matrix is employed to represent the equations of motion in relative coordinate space. Two examples are taken to test the method developed here.

Control input reconstruction using redundancy under torque limit

  • Park, Jonghoon;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.452-455
    • /
    • 1995
  • Various physical limitations which intrinsically exist in the manipulator control system, for example kinematic limits and torque limit, cause some undesirable effects. Specifically, when one or more actuators are saturated the expected control performance can not be anticipated and in some cases it induces instability of the system. The effect of torque limit, especially for redundant manipulators, is studied in this article, and an analytic method to reconstruct the control input using the redundancy is proposed based on the kinematically decomposed modeling of redundant manipulators. It results to no degradation of the output motion closed-loop dynamics at the cost of the least degradation of the null motion closed-loop dynamics. Numerical simulations help to verify the advantages of the proposed scheme.

  • PDF

Design and Analysis of Loading Block of VCR Deck Mechanism (비데오 데크 메카니즘의 로딩블럭 해석 및 설계)

  • 박태원;김광배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.502-511
    • /
    • 1994
  • A video deck mechanism is composed of various cams, links, and gears, and it requires precise movement. So kinematic motion between parts should be considered to get desired movement depending on the timing chart which defines movement of each part to get desired mode. Also dynamic effects should be considered to get right tape tension and to estimate motor force required to obtain accurate motion. The design process of the deck mechanism of VCR is explained briefly. The loading block of the deck mechanism is divided into a tape translational group and a brake control group. Each group is modeled for kinematic and dynamic analysis. Finally, two groups are combined together to analyze the loading block of the deck mechanism. Results are used to understand and modify an existing design.

The kinematics analysis of Discus throwing (원반던지기의 운동학적 분석)

  • Kim, Jong-In;Sun, Jae-Bok
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.29-47
    • /
    • 2003
  • This study is to analyze the kinematic variables in release motion of discuss throwing. For the matter, 5 people from the national team and collegiate discuss throwing in the year 2001 were chosen as the subjects and two S-VHS video cameras set in 60frames/sec were used for recording their motions. Coordinated raw positions data through digitizing are smoothing by butter-worth 's low-pass filtering method at a cut off frequency 6.0Hz. and the direct linear transformation(DLT) method was employed to obtain 3-D position coordinates. The conclusions were as follows; 1. The better record players showed the shorter approach time in the last support phase. 2. In the displacement CG, the better record players showed the shorter displacement in medial-lateral direction, and the longer displacement in horizontal direction. In the motion, the COG showed longer displacement vertical direction. 3. The better record players showed the faster horizontal velocity than vertical velocity in the release. 4. The better record players showed to take the posture of vertical axis in the release.

Development of Hip Joint Simulator to Evaluate The Wear of Biomaterials Used in Total Hip Joint Replacement (인공고관절 생체재료 마멸평가를 위한 시뮬레이터 개발)

  • 이권용;윤재웅;전승범;박성길
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.265-270
    • /
    • 2001
  • Hip joint simulator which Is an essential device for evaluating the wear of biomaterials (ultrahigh molecular weight polyethylene, Co-Cr alloy, alumina, etc.) used in total hip joint replacement was developed. This hip joint simulator mimics the joint motion and joint loading of human gait by adapting the 4 degree of freedom in kinematic motion (flexing/extension, adduction/abduction, Internal rotation/external rotation) and axial loading, Four stations are operated by 8 servo-motors and harmony drives. Joint leading was imposed by displacement control from a ball screw, LM guide, and spring system. Each kinematic link system operates separately or coupled modes. A heater and a thermocouple were installed for keeping the body temperature in each station.

  • PDF