실시간 원격 감지 시스템은 많은 감시 상황에서 중요한 가치를 지니고 있다. 실시간 원격 감지 시스템은 누군가가 그의 장소에서 무슨 일이 일어나고 있는지를 알 수 있게 한다. Kinect의 V2는 컴퓨터에게 눈의 역할을 제공하며 컬러와 깊이 이미지, 오디오 입력과 골격 데이터 등 다양한 데이터를 생성 할 수 있는 새로운 유형의 카메라이다. 본 논문에서는 깊이 이미지와 함께 Kinect V2의 센서를 사용하여, Kinect에 의해 덮인 공간에서의 모니터링 시스템을 제공한다. 따라서 Kinect 카메라에 의해 덮인 공간에 기초하여, 최소 및 최대 거리를 설정함으로써, 깊이의 범위를 이용하여 감시하는 대상 지역을 정의한다. 대상 공간에서 추적 개체가 있는 경우, 컴퓨터 비전 라이브러리(Emgu CV)에서 Kinect 카메라는 이미지 전체의 색상을 캡처하고, 이를 데이터베이스로 전송함으로써 인터넷이 있으면 어디서나 사용자가 자신의 모바일 장치를 통해 접속할 수 있다.
본 논문에서는 건축물 진동저감장치에 적용되는 액체감쇠기 내 유체 자유표면의 동적 거동 계측을 위해 저가형 RGB-depth 센서인 Microsoft사 $Kinect^{(R)}$ v2의 활용과 계측시스템을 구축하는 방법을 제안하였다. $Kinect^{(R)}$ v2의 성능검토 및 실효성 확인, SDK(software development kit)를 사용한 실시간 모니터링, 3D 공간상에서 유체의 표면 정보 취득, 기존 비디오 센싱기법과의 비교를 통해 본 연구에서 제안한 유체의 동적 거동 계측 시스템의 정확성과 우수성을 검증하였다. 제안된 계측시스템을 활용하여 소형 수조 내 액체에 대한 동적 거동 정밀계측을 수행하였으며, 이를 바탕으로 광범위한 가진입력에 대한 유체 자유표면의 동적 거동 특징을 확인하였다. 본 연구의 결과를 바탕으로 RGB-depth센서의 건축물 진동저감 적용을 통해 정밀한 모니터링 시스템을 구축하고 최적화된 액체감쇠기의 설계 및 운용을 기대할 수 있다.
키넥트 센서 버전 2는 컴퓨터 비전과 엑스 박스와 같은 엔유아이 인터페이스로 마이크로소프트에서 출시한 카메라의 일종이다. 이는 높은 프레임 속도로 컬러 영상과 깊이 영상, 오디오 입력 및 스켈레톤 데이터를 취득 할 수 있다. 이러한 다양한 타입의 데이터 정보를 제공해 주기 때문에 이것은 다른 범위의 연구자들을 위한 리소스가 된다. 본 논문에서는 깊이 이미지를 사용하여 우리는 키넥트 범위내에서 특정 영역을 감시하는 시스템을 제시한다. 타켓 영역은 깊이의 최소, 최대 값의 크기에 따라서 그 공간을 모니터링 할 수 있다. 컴퓨터 비전 라이브러리 (Emgu CV)를 사용해서 만약 어떤 오브젝트가 타겟 영역에서 검출된다면 그것을 추적하고 키넥트 카메라는 RGB 이미지를 데이터베이스 서버에 전송한다. 따라서 안드로이드 플랫폼 기반 모바일 애플리케이션을 통해 키넥트 타켓 지역에서 수상한 움직임이 감지되었음을 사용자에게 통지하고 그 장면의 RGB 영상을 표시하기 위해 개발되었다. 사용자는 모니터링 영역 또는 제한 구역과 관련된 다른 경우에서 가치 있는 물건의 대해 최선의 방법으로 반응하고 실시간 통지를 얻는다.
얼굴 검출은 복잡한 배경 내에서 다양한 얼굴의 자세로 인해 여전히 어려운 문제에 직면하고 있다. 본 논문은 피부색과 깊이 정보를 기반으로 한 한명 또는 여러 명의 얼굴을 검출하는 효과적인 알고리즘을 제안한다. 먼저 우리는 컬러 영상에서 가우시안 혼합 모델을 이용한 피부색 검출 방법에 대해 소개한다. 그리고 Kinect V2의 깊이 센서를 이용하여 획득한 3차원의 깊이 정보는 배경으로부터 사람의 몸을 분할할 때 유용하다. 그리고 레이블링 과정에서 여러 개의 특징을 이용하여 얼굴이 아닌 영역은 성공적으로 제거된다. 실험 결과를 통해 제안한 얼굴 검출 알고리즘은 다양한 조건과 복잡한 배경에서 얼굴이 효과적으로 검출되는 것을 확인할 수 있다.
본 연구에서는 건물 실내 공간 정보 획득을 위해 Microsoft사의 $Kinect^{(R)}$ v2를 활용한 point cloud 기법을 도입하였다. 카메라로 취득한 2차원의 투영 공간 이미지 픽셀 좌표를 각 카메라의 보정을 거쳐 3차원 이미지 변환하며 이를 토대로 공간 정보를 구현하였다. 기준점을 중심으로 $360^{\circ}$ 회전하여 취득한 3차원 이미지를 통해 거리 측정이 불가한 기존의 2차원 이미지의 한계를 개선하였으며, 이 과정을 통해 얻은 point cloud를 통해 3차원 map을 형성하였다. 형성된 3차원 map은 기존의 공간정보 융 복합을 위한 센서와 비슷한 수준의 측정 효율을 가지면서 동시에 렌즈 왜곡 현상에 대한 후처리 과정을 통해 공간 정보를 정확하게 측정할 수 있도록 하였다. 측정한 결과를 2D 도면과 실제 공간 및 구조부재의 길이 및 위치 등과 비교하여 검증하였다.
컴퓨터 비전은 인공 지능 기술을 통해 인간의 시각 시스템을 모방해 주변 환경을 보다 정확하게 인식하는 새로운 이미지 센서 기능으로 각광받고 있다. 본 논문에서는 사물감지 및 거리측정 기능이 있는 새로운 깊이 센서인 키넥트(Kinect) 카메라를 통해, 무인 또는 유인 차량, 로봇 및 드론 등을 위한 컴퓨터 비전의 가장 중요한 기능들을 대상으로 시험을 진행하였다. 키넥트 카메라를 통해 시야 내에 있는 사물의 자리 또는 위치를 예측하고, 실제 사물이 아닌 픽셀을 무시해 처리 시간을 줄일 수 있도록 감지한 사물이 실제 사물인지 확인하여 깊이 센터를 통해 정확하게 거리를 측정한다. 실험 결과, 해당 거리센서는 좋은 결과를 나타냈으며, 추가 프로세싱을 위한 컴퓨터 비전 어플리케이션의 핵심 기능인 사물감지와 거리측정에 키넥트 카메라를 사용한다.
인물의 위치와 행동을 인식하는 것은 여러 분야의 서비스에서 활용할 수 있는 기술이다. 그렇기에 다양한 방식으로 연구되어 왔다. 기존의 방식은 일반 RGB 카메라의 영상에 영상처리 기법과 딥러닝을 사용하여 3차원 공간상의 인물 위치를 인식하는 방식과 라이다와 같이 깊이를 인식 할 수 있는 장치를 활용하여 3차원 공간상 인물의 위치를 인식하는 방식이 있다. 각각의 방식은 RGB 카메라를 이용할 수 있다는 장점, 인식률이 우수하다는 장점을 가지고 있다. 하지만 영상처리 방식은 연산량이 많아 실시간 서비스에 불리하다는 한계점이 있다. 라이다 방식은 기기의 부피가 커 공간제약이 있다는 점과 이동이 불편하다 있다는 한계점이 있다. 본 연구에서는 Kinect와 openFrameworks를 활용하여 공간이 효율적이고 연산량이 적은 방식의 3차원 공간에서 인물 위치 인식과 실시간 이동에 대한 방향 인식을 다룬다.
Rao, D. Surendra;Potturu, Sudharsana Rao;Bhagyaraju, V
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.97-108
/
2022
The video-assisted human action recognition [1] field is one of the most active ones in computer vision research. Since the depth data [2] obtained by Kinect cameras has more benefits than traditional RGB data, research on human action detection has recently increased because of the Kinect camera. We conducted a systematic study of strategies for recognizing human activity based on deep data in this article. All methods are grouped into deep map tactics and skeleton tactics. A comparison of some of the more traditional strategies is also covered. We then examined the specifics of different depth behavior databases and provided a straightforward distinction between them. We address the advantages and disadvantages of depth and skeleton-based techniques in this discussion.
본 연구에서는 MS Kinect v2 RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 탐지하는 방법을 제안한다. 기존의 연구는 RGB 영상에서 OpenPose 등의 딥러닝 모델을 이용하여 골격 정보를 추출한 후 LSTM, GRU 등의 순환신경망 모델을 이용해 인식을 수행하였다. 제안한 방법은 카메라로부터 골격정보를 바로 전달 받아 가속도 및 거리의 2개의 시계열 특징을 추출한 후 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 인식하였다. 어깨, 척추, 골반 등 주요 골격을 대상으로 중심관절을 구하고 이 중심관절의 움직임 가속도와 바닥과의 거리를 특징으로 제안하였다. 추출된 특징은 Stacked LSTM, Bi-LSTM 등의 모델과 성능비교를 수행하였고 GRU, LSTM 등의 기존연구에 비해 향상된 검출 성능을 실험을 통해 증명하였다.
본 논문에서는 실사 영상 기반으로 3D 영상을 생성하기 위하여 효율적으로 다시점 영상을 획득하는 시스템을 제안한다. 기존의 시스템은 대부분 다수의 카메라를 이용하여 다시점 영상을 획득하는 구조이다. 이 경우 각 카메라 간의 정합(calibration)을 수행해야 할 뿐만 아니라 스테레오 매칭을 통해 깊이 정보를 추출하는 과정이 필요하다. 제안하는 시스템에서는 카메라는 고정시킨 상태에서 촬영하고자 하는 객체를 턴테이블 위에 놓고 회전시키면서 촬영한다. 카메라는 Microsoft에서 출시한 컬러 정보와 깊이 정보를 동시에 얻을 수 있는 키넥트(Kinect) v2를 사용한다. 실험을 통하여 제안하는 시스템이 기존 시스템보다 다시점 영상을 효율적으로 생성하는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.