• Title/Summary/Keyword: Kinds of fuel

Search Result 360, Processing Time 0.022 seconds

An Economic Dispatch Algorithm as Combinatorial Optimization Problems

  • Min, Kyung-Il;Lee, Su-Won;Moon, Young-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.468-476
    • /
    • 2008
  • This paper presents a novel approach to economic dispatch (ED) with nonconvex fuel cost function as combinatorial optimization problems (COP) while most of the conventional researches have been developed as function optimization problems (FOP). One nonconvex fuel cost function can be divided into several convex fuel cost functions, and each convex function can be regarded as a generation type (G-type). In that case, ED with nonconvex fuel cost function can be considered as COP finding the best case among all feasible combinations of G-types. In this paper, a genetic algorithm is applied to solve the COP, and the $\lambda$-P table method is used to calculate ED for the fitness function of GA. The $\lambda$-P table method is reviewed briefly and the GA procedure for COP is explained in detail. This paper deals with three kinds of ED problems, namely ED considering valve-point effects (EDVP), ED with multiple fuel units (EDMF), and ED with prohibited operating zones (EDPOZ). The proposed method is tested for all three ED problems, and the test results show an improvement in solution cost compared to the results obtained from conventional algorithms.

Thermodynamic Analysis on Steam Reforming of Hydrocarbons and Alcohols for Fuel Cell System (연료전지시스템을 위한 탄화수소 및 알코올 연료의 수증기 개질 특성에 관한 열역학적 연구)

  • Oh, Jin-Suk;Lee, Kyung-Jin;Kim, Sun-Hee;Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. Fuel conversion system to hydrogen is an essential part for fuel cell ship. We have investigated thermodynamically the steam reforming characteristics of hydrocarbons and alcohols for the fuel conversion systems.

An Experimental Study on the Effect of Fuel Dilution on the Propagation Velocity of Triple Flames in a Diverging Channel (연료희석이단면확대채널에형성된삼지화염의전파속도에미치는영향에관한실험적연구)

  • Seo, Jeong-Il;Shin, Hyun-Dong;Kim, Nam-Il
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.13-18
    • /
    • 2007
  • When triple flames propagated in a diverging channel, the effects of fuel dilution on the lift-off characteristics of triple flames were investigated. A multi-slot burner was used to stabilize the lift-off flame especially at weak fuel concentration gradients. It was reported that there is a maximum propagation velocity at a critical concentration gradient in an open jet regardless of fuel dilution. The enhancement of a diffusion flame affected to increase the propagation velocity around critical concentration gradients. However, the influence of a confined channel on the structure of triple flames according to fuel dilution needs to be investigated compared with an open jet case. This study aimed to examine the effect of a confined channel on the structure and the propagation velocity of the triple flames according to fuel dilution. Lift-off height and propagation velocity of triple flames were investigated by employing three kinds of fuel compositions diluted by nitrogen (0%, 25%, 50% $N_2$), Fuel dilution reduced the propagation velocity of triple flame in a confined channel mainly due to the decrease of flame temperature in premixed branch. Despite the difference in fuel dilution, the propagation velocity has a maximum value at a specific fuel concentration gradient even though the critical concentration gradient increases with fuel dilution. And the critical concentration gradient in a confined channel is larger than that in an open jet due to enhancement of convective diffusion.

  • PDF

Synthesis and Characterization of Polybenzimidazoles Containing Perfluorocyclobutane Groups for High-temperature Fuel Cell Applications

  • Chang, Bong-Jun;Kim, Dong-Jin;Kim, Jeong-Hoon;Lee, Soo-Bok;Joo, Hyeok-Jong
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2007
  • This paper describes the preparation and characterization of two kinds of fluorinated polybenzimidazole (PBI)s which can be potentially used for phosphoric acid-doped, high-temperature polymer electrolyte membrane fuel cells. Two kinds of perfluorocyclobutane (PFCB)-containing monomers were prepared via following synthetic steps; after fluoroalkylation of methyl 3-(hydroxy) benzoate and methyl 4-(hydroxy) benzoate with 1,2-dibromotetrafluoroethane and subsequent Zn-mediated dehalogenation, these compounds were cyclodimerized at $200^{\circ}C$ affording the ester-terminated monomers containing PFCB ether groups. The synthesized intermediates and monomers were characterized using FT-IR, $^1H-NMR,\;^{19}F-NMR$, and mass spectroscopy. The fluorinated PBIs were then successfully prepared through the solution polycondensation of the monomers and 3,3'-diaminobenzidine in polyphosphoric acid. Compared with traditional PBI, the glass transition temperatures of the fluorinated PBIs were obtained at $262^{\circ}C\;and\;269^{\circ}C$ which are lower than that of PBI and their initial degradation temperatures were still high over $400^{\circ}C$ under nitrogen. The fluorinated PBIs showed higher d-spacing values and improved solubility in several organic solvents as well as phosphoric acid, which confirmed they could be good candidates for the high temperature fuel cell membranes.

Preparation and Characterization of Uranium Silicide Dispersion Nuclear Fuel by Centrifugal Atomization (원심분무에 의한 Uranlum filicide 분산핵연료의 제조와 특성)

  • 김창규
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.72-78
    • /
    • 1994
  • Two kinds of $U_3Si$ powders and $U_3Si$ dispersed nuclear fuel meats have been prepared by conventional comminution process and a newly developed rotating disk atomization process. In contrast to angular shape and broad size distribution of the conventionally processed powder, the atomized powder was spherical and showed narrow size distribution. For the atomized powder, the heat treatment time for the formation of $U_3Si$ by a peritectoid reaction was reduced to about one tenth, thanks to microstructure refinement by rapid cooling of about 5$\times$104 K/s. The extruding pressure of atomized $U_3Si$ powder and Al powder mixture was lower than that of comminuted $U_3Si$ and Al powder mixture. The elongation of the atomization processed fuel meats was much higher than that of the comminution processed fuel meats and remained over 10% up to 80wt.% of $U_3Si$ powder fraction in the fuel meats. It appears therefore that the loading density of $U_3Si$ in fuel meat can be increased by using atomized $U_3Si$ powder. The atomized spherical particles were randomly distributed, while the comminuted particles with angular and longish shape were considerably aligned along the extrusion direction. Along the transverse direction of the extraction the electrical conductivity of the atomization processed fuel meats was appreciably higher than that of comminution processed fuel meats. This tendency became pronounced as $U_3Si$ content increased. Because the thermal conduction which is believed to be proportioned to the electrical conduction in the nuclear fuel meats occurs in radial direction, the atomization processed fuel can be better used in research reactors where high thermal conductivity is required.

  • PDF

The Comparison Study on Reburning Effects of LNG and Rice Husk in Heavy Oil Flamed Furnace (중유 화염 연소로에서 LNG와 왕겨분말의 재연소 효과 비교)

  • Shin, Myeung-Chul;Kim, Se-Won;Lee, Chang-Yeop
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.25-32
    • /
    • 2009
  • In commercial combustion systems, heavy oil is one of main hydrocarbon fuel because of its economical efficiency. Regarding heavy oil combustion, due to increasing concerns over environmental pollutants such as carbon monoxide, unburned hydrocarbon and nitrogen oxides, development of low pollutant emission methods has become an imminent issue for practical application to numerous combustion devices. Also a great amount of effort has been tried to developed effective methods for practical using of biomass. It is also an important issue to reduce carbon tax. In this paper, an experimental study has been conducted to evaluate the effect of biomass reburning on NOx formation in a heavy oil flamed combustion furnace. Experiments were performed in flames stabilized by a multi-staged burner, which was mounted at the front of the furnace. Experimental tests were conducted using air-carried rice husk powder and LNG as the reburn fuel and heavy oil as the main fuel. The paper reports data on flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. NOx concentration in the exhaust has decreased considerably due to effect of reburning. The maximum NOx reduction rate was 62% when the rice husk was used by reburn fuel, however it was 59% when the LNG was used by reburn fuel. The result shows the positive possibility of biomass reburning system for optimal NOx reduction.

  • PDF

An Experimental study on Analysis of Hydrocarbon of Exhaust gas Using Oxygenated Fuels by Gas Chromatography in Diesel Engine (디젤기관의 배기 배출물 중 가스 크로마토그래피를 이용한 탄화수소분석에 관한 실험적 연구)

  • Choi, S.H.;Oh, Y.T.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.12-18
    • /
    • 2000
  • Recently, our world is faced with very serious and hard problems related to the air pollution due to the exhaust emissions of the diesel engine. So, lots of researchers have studied to reduce the exhaust emissions with various methods of diesel engine that influenced the environment strong. In this paper, the quantities of the low and high hydrocarbon among the exhaust emissions in diesel engine have been investigated by the quantitative analysis of the hydrocarbon $C_1{\sim}C_6$ using the gas chromatography. This study carried out by comparing the chromatogram with diesel fuel and three kinds of mixed fuels. One is the diesel fuel blended DGM(diethylene glycol dimethyl ether) 5%. Another is the diesel fuel blended DEE(diethyl ether) 25% and DMC(dimethyl carbonate) 10%. The results of this study show that the hydrocarbon $C_1{\sim}C_6$ among the exhaust emissions of the mixed fuels are exhausted lower than those of the diesel fuel at the all load and speed.

  • PDF

Welding Quality Evaluation on the LASER Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly(II) (경수로 원전연료용 질칼로이 지지격자체의 LASER 용접품질 평가(II))

  • Song, Gi-Nam;Yun, Gyeong-Ho;Lee, Gang-Hui;Kim, Su-Seong;Han, Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.70-72
    • /
    • 2005
  • Nuclear fuel assemblies for pressurized water reactors(PWR) are loaded in the reactor core throughout the residence time of three to five years. A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly. The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, laser welding qualities of the Zircaloy spacer grid assembly welded by two welding companies, such as weld strength, weld penetration depth, and weld bead size, are examined and compared.

  • PDF

DEVELOPMENT OF PYROPROCESSING AND ITS FUTURE DIRECTION

  • Inoue, Tadashi;Koch, Lothar
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.183-190
    • /
    • 2008
  • Pyroprocessing is the optimal means of treating spent metal fuels from metal fast fuel reactors and is proposed as a potential option for GNEP in order to meet the requirements of the next generation fuel cycle. Currently, efforts for research and development are being made not only in the U.S., but also in Asian countries. Electrorefining, cathode processing by distillation, injection casting for fuel fabrication, and waste treatment must be verified by the use of genuine materials, and the engineering scale model of each device must be developed for commercial deployment. Pyroprocessing can be effectively extended to treat oxide fuels by applying an electrochemical reduction, for which various kinds of oxides are examined. A typical morphology change was observed following the electrochemical reduction, while the product composition was estimated through the process flow diagram. The products include much stronger radiation emitter than pure typical LWR Pu or weapon-grade Pu. Nevertheless, institutional measures are unavoidable to ensure proliferation-proof plant operations. The safeguard concept of a pyroprocessing plant was compared with that of a PUREX plant. The pyroprocessing is better adapted for a collocation system positioned with some reactors and a single processing facility rather than for a centralized reprocessing unit with a large scale throughput.

A Study of Supersonic Combustion using Various Liquid Hydrocarbon Fuels

  • Hashimoto, Susumu;Hiramoto, Ayumu;Tsue, Mitsuhiro;Kono, Michikata;Ishikawa, Yuta;Suzuki, Shunsuke;Ujiie, Yasushige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.340-345
    • /
    • 2008
  • Liquid hydrocarbon fuels are gathering increasing attention as candidates for a scramjet engine fuel. Experimental researches on supersonic combustion of kerosene have been conducted in model scramjet combustors. Through these works, understanding of combustion characteristics of kerosene have been revealed on some level, and so we decided to work on other kinds of liquid hydrocarbon fuels in order to explore effects of fuel properties on supersonic combustion performances, especially self-ignition and flame-holding. In addition, comparing the results of new fuels with kerosene, the relationship between fuel properties and supersonic combustion characteristics was discussed.

  • PDF