• Title/Summary/Keyword: Kinase inhibitors

Search Result 517, Processing Time 0.027 seconds

Chronic Myeloid Leukemia - Prognostic Value of Mutations

  • Kaleem, Bushra;Shahab, Sadaf;Ahmed, Nuzhat;Shamsi, Tahir Sultan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7415-7423
    • /
    • 2015
  • Chronic myeloid leukemia (CML) is a stem cell disorder characterized by unrestricted proliferation of the myeloid series that occurs due to the BCR-ABL fusion oncogene as a result of reciprocal translocation t(9;22) (q34;q11). This discovery has made this particular domain a target for future efforts to cure CML. Imatinib revolutionized the treatment options for CML and gave encouraging results both in case of safety as well as tolerability profile as compared to agents such as hydroxyurea or busulfan given before Imatinib. However, about 2-4% of patients show resistance and mutations have been found to be one of the reasons for its development. European Leukemianet gives recommendations for BCR-ABL mutational analysis along with other tyrosine kinase inhibitors (TKIs) that should be administered according to the mutations harbored in a patient. The following overview gives recommendations for monitoring patients on the basis of their mutational status.

Future Cancer Therapy with Molecularly Targeted Therapeutics: Challenges and Strategies

  • Kim, Mi-Sook
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.371-389
    • /
    • 2011
  • A new strategy for cancer therapy has emerged during the past decade based on molecular targets that are less likely to be essential in all cells in the body, therefore confer a wider therapeutic window than traditional cytotoxic drugs which mechanism of action is to inhibit essential cellular functions. Exceptional heterogeneity and adaptability of cancer impose significant challenges in oncology drug discovery, and the concept of complex tumor biology has led the framework of developing many anticancer therapeutics. Protein kinases are the most pursued targets in oncology drug discovery. To date, 12 small molecule kinase inhibitors have been approved by US Food and Drug Administration, and many more are in clinical development. With demonstrated clinical efficacy of bortezomib, ubiquitin proteasome and ubiquitin-like protein conjugation systems are also emerging as new therapeutic targets in cancer therapy. In this review, strategies of targeted cancer therapies with inhibitors of kinases and proteasome systems are discussed. Combinational cancer therapy to overcome drug resistance and to achieve greater treatment benefit through the additive or synergistic effects of each individual agent is also discussed. Finally, the opportunities in the future cancer therapy with molecularly targeted anticancer therapeutics are addressed.

Four Dammarane Triterpenes and Their Inhibitory Properties Against Eight Receptor Tyrosine Kinases

  • Heliawati, Leny;Khatimah, Husnul;Hermawati, Elvira;Syah, Yana Maolana
    • Natural Product Sciences
    • /
    • v.26 no.4
    • /
    • pp.345-350
    • /
    • 2020
  • In recent years, tyrosine kinases (TKs) have been the target to combat cancers, and most of the developed inhibitors are of synthetic origin. Natural compounds that have the properties as the TK's inhibitors are very limited. This paper described the isolation of a new dammarane triterpene from the tree bark of Sandoricum koetjape, along with three known related dammaranes from the damar resin of Shorea javanica, as well as their inhibitory properties against eight receptor TKs (RTKs: EGFR, HER2, HER4, IGF1R, InsR, KDR, PDGFRα, and PDGFRβ). Based on the NMR and mass spectral data the new compound was identified as (12β,20S)-12,20-dihydroxy-3,4-seco-dammaran-4,24-dien-3-oic acid (12β-hydroxydammarenolic acid) (1), while the three known compounds were identified as (20S)-20-hydroxy-3,4-seco-dammaran-4,24-dien-3-oic acid (dammarenolic acid) (2), (3β,20S)-3,20-dihydroxydammaran-24-ene (3), and (20S)-3-oxo-20-hydroxydammaran-24-ene (4). The tyrosine kinase assay of the four compounds resulted only 1 and 2 at concentration of 10 μM that had weak activity against EGFR and InsR, with their % inhibitory were 30%, 27% (1), 45%, and 32% (2), respectively. The results suggested that the presence of a linear carboxylic acid group in both compounds could be of significance to the inhibitory properties against the two RTKs.

Current Status of Systemic Therapy in Hepatocellular Carcinoma (진행성 간세포암종의 전신치료제)

  • Lee, Han Ah;Seo, Yeon Seok
    • Journal of Digestive Cancer Research
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 2020
  • Although being one of the major causes of malignancy related death globally, hepatocellular carcinoma (HCC) has not received much attention in respect of novel drug development. Fortunately, several new drugs were found to be effective and tolerable in patients with advanced HCC from a number of phase 3 studies during the recent several years. Novel multi-targeted kinase inhibitors and immune checkpoint inhibitors were approved for clinical use, and combination strategies to maximize the potent of drugs demonstrated promising antitumor activity and safety with high response rate and improved safety profile. The increased number of available agents for HCC will contribute to change of treatment strategies and prognosis of patients with advanced HCC. Still, there is a many critical questions remain unanswered. Currently ongoing trials and future studies will provide better understanding of tumor biology and optimized criteria for patient selection and combination therapies.

Short Heterodimer Partner as a Regulator in OxLDL-induced Signaling Pathway

  • Kimpak, Young-Mi
    • Proceedings of the PSK Conference
    • /
    • 2001.10a
    • /
    • pp.109-113
    • /
    • 2001
  • Oxidized low-density lipoprotein (oxLDL) has been shown to modulate transactivations by the peroxisome proliferator activated receptor (PPAR)$\gamma$ and nuclear factor-kappa B (NF$\kappa$B). In this study, the oxLDL signaling pathways involved with the NF$\kappa$B transactivation were investigated by utilizing a reporter construct driven by three upstream NF$\kappa$B binding sites, and various pharmacological inhibitors. OxLDL and its constituent lysophophatidylcholine (lysoPC) induced a rapid and transient increase of intracellular calcium and stimulated the NF-KB transactivation in resting RAW264.7 macrophage cells in an oxidation-dependent manner. The NF$\kappa$B activation by oxLDL or lysoPC was inhibited by protein kinase C inhibitors or an intracellular calcium chelator. Tyrosine kinase or PI3 kinase inhibitors did not block the NF$\kappa$B transactivation. Furthermore, the oxLDL-induced NF$\kappa$B activity was abolished by the PPAR$\gamma$ ligands. When the endocytosis of oxLDL was blocked by cytochalasin B, the NF$\kappa$B transactivation by oxLDL was synergistically increased, while PPAR transactivation was blocked. These results suggest that oxLDL activates NF-$\kappa$B in resting macrophages via protein kinase C- and/or calcium-dependent pathways, which does not involve the endocytic processing of oxLDL. The endocytosis-dependent PPAR$\gamma$ activation by oxLDL may function as an inactivation route of the oxLDL induced NF$\kappa$B signal. Short heterodimer partner (SHP), specifically expressed in liver and a limited number of other tissues, is an unusual orphan nuclear receptor that lacks the conventional DNA-binding domain. In this work, we found that SHP expression is abundant in murine macrophage cell line RAW 264.7 but suppressed by oxLDL and its constituent I3-HODE, a ligand for peroxisome proliferator-activated receptor y. Furthermore, SHP acted as a transcription coactivator of nuclear factor-$\kappa$B (NF$\kappa$B) and was essential for the previously described NF$\kappa$B transactivation by lysoPC, one of the oxLDL constituents. Accordingly, NF$\kappa$B, transcriptionally active in the beginning, became progressively inert in oxLDL-treated RAW 264.7 cells, as oxLDL decreased the SHP expression. Thus, SHP appears to be an important modulatory component to regulate the transcriptional activities of NF$\kappa$B in oxLDL-treated, resting macrophage cells.

  • PDF

Involvement of Ca2+/Calmodulin Kinase II (CaMK II) in Genistein-Induced Potentiation of Leucine/Glutamine-Stimulated Insulin Secretion

  • Lee, Soo-Jin;Kim, Hyo-Eun;Choi, Sung-E;Shin, Ha-Chul;Kwag, Won-Jae;Lee, Byung-Kyu;Cho, Ki-Woong;Kang, Yup
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • Genistein has been reported to potentiate glucose-stimulated insulin secretion (GSIS). Inhibitory activity on tyrosine kinase or activation of protein kinase A (PKA) was shown to play a role in the genistein-induced potentiation effect on GSIS. The aim of the present study was to elucidate the mechanism of genistein-induced potentiation of insulin secretion. Genistein augmented insulin secretion in INS-1 cells stimulated by various energygenerating nutrients such as glucose, pyruvate, or leucine/glutamine (Leu/Gln), but not the secretion stimulated by depolarizing agents such as KCl and tolbutamide, or $Ca^{2+}$ channel opener Bay K8644. Genistein at a concentration of $50{\mu}M$ showed a maximum potentiation effect on Leu/Gln-stimulated insulin secretion, but this was not sufficient to inhibit the activity of tyrosine kinase. Inhibitor studies as well as immunoblotting analysis demonstrated that activation of PKA was little involved in genistein-induced potentiation of Leu/Gln-stimulated insulin secretion. On the other hand, all the inhibitors of $Ca^{2+}$/calmodulin kinase II tested, significantly diminished genistein-induced potentiation. Genistein also elevated the levels of $[Ca^{2+}]_i$ and phospho-CaMK II. Furthermore, genistein augmented Leu/Gln-stimulated insulin secretion in CaMK II-overexpressing INS-1 cells. These data suggest that the activation of CaMK II played a role in genistein-induced potentiation of insulin secretion.

Concomitant EGFR Inhibitors Combined with Radiation for Treatment of Non-small Cell Lung Carcinoma

  • Zheng, De-Jie;Yu, Guo-Hua;Gao, Jian-Feng;Gu, Jun-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4485-4494
    • /
    • 2013
  • Epidermal growth factor receptor (EGFR) is considered to be one of the key driver genes in non-small cell lung cancer (NSCLC). Several clinical trials have shown great promise of EGFR tyrosine kinase inhibitors (TKIs) in the first-line treatment of NSCLC. Many advances have been made in the understanding of EGFR signal transduction network and the interaction between EGFR and tumor microenvironment in mediating cancer survival and development. The concomitant targeted therapy and radiation is a new strategy in the treatment of NSCLC. A number of preclinical studies have demonstrated synergistic anti-tumor activity in the combination of EGFR inhibitors and radiotherapy in vitro and in vivo. In the present review, we discuss the rationale of the combination of EGFR inhibitors and radiotherapy in the treatment of NSCLC.

Virtual screening, molecular docking studies and DFT calculations on JNK3

  • Priya, dharshini;Thirumurthy, Madhavan
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.179-186
    • /
    • 2022
  • The c-Jun N-terminal kinase (JNK3) play major role in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, cerebral ischemia and other Central Nervous System disorders. Since JNK3 is primarily stated in the brain and stimulated by stress-stimuli, this situation is conceivable that inhibiting JNK3 could be a possible treatment for the mechanisms underlying neurodegenerative diseases. In this study drugs from Zinc15 database were screened to identify the JNK3 inhibitors by Molecular docking and Density functional theory approach. Molecular docking was done by Autodock vina and the ligands were selected based on the binding affinity. Our results identified top ten novel ligands as potential inhibitors against JNK3. Molecular docking revealed that Venetoclax, Fosaprepitant and Avapritinib exhibited better binding affinity and interacting with proposed binding site residues of JNK3. Density functional theory was used to compute the values for energy gap, lowest unoccupied molecular orbital (LUMO), and highest occupied molecular orbital (HOMO). The results of Density functional theory study showed that Venetoclax, Fosaprepitant and Avapritinib serves as a lead compound for the development of JNK3 small molecule inhibitors.

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach

  • Gadhe, Changdev G.;Balupuri, Anand;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2494-2504
    • /
    • 2014
  • P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.

Protein Kinase C Receptor Binding Assay for the Detection of Chemopreventive Agents from Natural Products

  • An, Geon-Ho;Suh, Young-Bae;Son, Kun-Ho;Chang, Il-Moo;Mar, Woong-Chon
    • Natural Product Sciences
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 1997
  • Protein Kinase C (PKC) is generally believed to play a central role in signal transduction, cellular growth control, gene expression, and tumor promotion. And it has been suggested that inhibitors of PKC might play important roles for the prevention and treatment of cancer. In order to investigate the possible inhibitors of PKC from natural products, PKC receptor binding assay was performed using bovine brain particulate as a source of PKC and the amount of $[^3H]Phorbol$ 12,13-dibutyrate (PDBu) bound to PKC was measured in the presence of test materials. Total methanol extracts from 100 kinds of natural products were partitioned into 3 fractions (n-hexane, ethyl acetate and aqueous layer) and their binding ability to the regulatory domain of PKC was evaluated. The ethyl acetate fractions of Morus alba $(roots,\;IC_{50}:\;156.6\;{\mu}g/ml)$, Rehmannia glutinosa $(roots,\;IC_{50}:\;134.3\;{\mu}g/ml)$, Lysimachia foenum-graecum $(roots,\;IC_{50}:\;167.8\;{\mu}g/ml)$, Polygonum cuspidata $(roots,\;IC_{50}:\;157.3\;{\mu}g/ml)$, Cnidium officinale $(aerial\;parts,\;IC_{50}:\;145.2\;{\mu}g/ml)$, and the hexane $(IC_{50}:\;179.3\;{\mu}g/ml)$ and the EtOAc fraction of Symplocarpus nipponicus $(roots,\;IC_{50}:\;155.9\;{\mu}g/ml)$ showed inhibitory activity of $[^3H]PDBu$ binding to PKC.

  • PDF