• Title/Summary/Keyword: Kinase inhibitors

Search Result 517, Processing Time 0.03 seconds

Potential Drug Interactions in Cancer Patients on Oral Kinase Inhibitors (경구용 활성효소 억제제 복용 암환자의 잠재적 약물상호작용 연구)

  • Jung, Eun-Hee;Bang, Joon Seok;Lee, Yu Jeung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.23 no.2
    • /
    • pp.129-136
    • /
    • 2013
  • Objectives: Among many new drugs that are under investigation with intent to treat cancer, oral kinase inhibitors are proven to be effective in numerous clinical trials and easy to administer. Due to these advantages the use of oral kinase inhibitors is increasing. Oral kinase inhibitors are metabolized by CYP450 which can result either increase of adverse effect or decrease of drug effect by drug interaction when used concurrently with other agents. In this research, the medication records of patients on oral kinase inhibitors from Oct. 2010 to Nov. 2011 were reviewed to investigate potential drug interactions. Methods: From Oct. 2010 to Nov. 2011, cancer patients in Inha University Hospital who took oral kinase inhibitors more than once were included. The patients' medication records were reviewed to list out concurrent medications that have interaction potential with oral kinase inhibitors, the frequency of concurrent use, and the severity of interaction result using Micromedex$^{(R)}$ and Lexicomp-online$^{(R)}$ as references. Results: As a result, 90 cases of drug with interaction potential were prescribed by Micromedex$^{(R)}$ and 179 cases by Lexicomp-online$^{(R)}$ data. In case of severity, 33.3% by Micromedex$^{(R)}$ and 26.3% by Lexicomp-online$^{(R)}$ were categorized as Major and 65.6% by Micromedex$^{(R)}$ and 72.6% by Lexicomp-online$^{(R)}$ as Moderate. The number of adverse events was 92 cases which 58.7% were on skin and 19.6% on Gastro-intestinal tract. Conclusions: Considerable number of drug with interaction potential was used though each oral kinase inhibitors showed differences in extent. Hence there exists the risk of drug interaction in patients taking oral kinase inhibitors with other drugs.

Molecular Basis of Drug Resistance: Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors and Anaplastic Lymphoma Kinase Inhibitors

  • Yang, Sei-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.5
    • /
    • pp.188-198
    • /
    • 2013
  • Over the past decade, several kinase inhibitors have been approved based on their clinical benefit in cancer patients. Unfortunately, in many cases, patients develop resistance to these agents via secondary mutations and alternative mechanisms. To date, several major mechanisms of acquired resistance, such as secondary mutation of the epidermal growth factor receptor (EGFR) gene, amplification of the MET gene and overexpression of hepatocyte growth factor, have been reported. This review describes the recent findings on the mechanisms of primary and acquired resistance to EGFR tyrosine kinase inhibitors and acquired resistance to anaplastic lymphoma kinase inhibitors, primarily focusing on non-small cell lung carcinoma.

Action of Phospholipase $A_2$in Histamine Release from Mast Cells (비만세포에서 Histamine유리에 관여하는 Phospholipase $A_2$의 작용)

  • 이윤혜;이승준;서무현;장용운;윤정이
    • YAKHAK HOEJI
    • /
    • v.45 no.3
    • /
    • pp.287-292
    • /
    • 2001
  • To investigate whether phospholipase $A_2$pathway is involved in histamine release of rat peritoneal mast cells, we measured histamine release in the presence of various enzyme inhibitors involved in eicosanoid pathway, such as phospholipase $A_2$, cyclooxygenase and lipoxygenase. Phospholipase $A_2$inhibitors, manoalide and OPC, significantly inhibited histamine release induced by 100 $\mu$M ATP and 1$\mu$g/ml compound 48/80. Cyclooxygenase inhibitors, ibuprofen and indomethacin, significantly inhibited ATP-induced histamine release and lipoxygenase inhibitors, baicalein and caffeic acid, also significantly inhibited. To investigate the involvement of protein kinase in ATP- and compound 48/80-induced histamine release, we observed effects of protein kinase inhibitors on histamine release. Bisindolmaleimide (protein kinase C antagonist) dose-dependently inhibited both ATP and compound 48/80-induced histamine release. Tyrosine kinase inhibitors (methyl 2,5-dihydroxy cinnamate and genistein) dose-dependently inhibited ATP and compound 48/80-induced histamine release. Protein kinase C and tyrosine kinase seem to be involved in histamine release induced by ATP and compound 48/80. These results suggest that phospholipase $A_2$pathway as well as protein kinase C and tyrosine kinase are involved in histamine release of rat peritoneal mast cells by ATP and compound 48/80.

  • PDF

Descriptor-Based Profile Analysis of Kinase Inhibitors to Predict Inhibitory Activity and to Grasp Kinase Selectivity

  • Park, Hyejin;Kim, Kyeung Kyu;Kim, ChangHoon;Shin, Jae-Min;No, Kyoung Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2680-2684
    • /
    • 2013
  • Protein kinases (PKs) are an important source of drug targets, especially in oncology. With 500 or more kinases in the human genome and only few kinase inhibitors approved, kinase inhibitor discovery is becoming more and more valuable. Because the discovery of kinase inhibitors with an increased selectivity is an important therapeutic concept, many researchers have been trying to address this issue with various methodologies. Although many attempts to predict the activity and selectivity of kinase inhibitors have been made, the issue of selectivity has not yet been resolved. Here, we studied kinase selectivity by generating predictive models and analyzing their descriptors by using kinase-profiling data. The 5-fold cross-validation accuracies for the 51 models were between 72.4% and 93.7% and the ROC values for all the 51 models were over 0.7. The phylogenetic tree based on the descriptor distance is quite different from that generated on the basis of sequence alignment.

Effects of Protein Kinase Inhibitors on In Vitro Protein Phosphorylation and on Secondary Metabolism and Morphogenesis in Streptomyces coelicolor A3(2)

  • Hong, Soon-Kwang;Sueharu, Horinouchi
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.325-332
    • /
    • 1998
  • In vitro phosphorylation experiments with a cell extract of Streptomyces coelicolor A3(2) M130 in the presence of ${\gamma}-[^32P]$]ATP revealed the presence of multiple phosphorylated proteins, including the AfsR/AfsK kinases which control the biosynthesis of A-factor, actinorhodin, and undecylprodigiosin. Phosphorylation of AfsR by a cell extract as an AfsK source was significantly inhibited by Ser/Thr protein kinase inhibitors, staurosporine and K-252a, at concentrations giving 50% inhibition ($IC_50$) of $1{\mu}M\;and\;0.1{\mu}M$, respectively. Further in vitro experiments with the cell extracts showed that phosphorylation of multiple proteins was inhibited by various protein kinase inhibitors with different inhibitory profiles. Manganese and calcium ions in the reaction mixture also modulate phosphorylation of multiple proteins. Manganese at 10 mM greatly enhanced the phosphorylation and partially circumvented the inhibition caused by staurosporine and K-252a. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, which are known as tyrosine kinase inhibitors, did not show any significant inhibition of AfsR phosphorylation. Consistent with the in vitro effect of the kinase inhibitors, they inhibited aerial mycelium formation and pigmented antibiotic production on solid media. On the contrary, when assayed in liquid culture, the amount of actinorhodin produced was increased by staurosporine and K-252a and greatly decreased by manganese. All of these data clearly show that the genus Streptomyces possesses several protein kinases of eukaryotic types which are involved in the regulatory network for morphogenesis and secondary metabolism.

  • PDF

1,3,4-Oxadiazole-2(3H)-thione as a New Scaffold for Pim Kinase Inhibitors

  • Lee, Ah Yeon;Hong, Victor Sukbong;Lee, Jinho
    • Quantitative Bio-Science
    • /
    • v.37 no.2
    • /
    • pp.113-124
    • /
    • 2018
  • Pim kinases are important targets for cancer therapies because they are mainly responsible for cancer metastasis and overall therapeutic treatment responses. Because of their unusual structural feature in the hinge region of the ATP-binding site, new binding motifs have been discovered and used for the development of Pim kinases inhibitors. The results of a screening of 5-membered heteroaromatic compounds and the effects of structural modifications on the inhibition of Pim kinases' activities showed the potential scaffold for Pim inhibitors. 1,3,4-Oxadiazole-2(3H)-thione was found as a new scaffold for Pim kinase inhibitors.

3D-QSAR Study on Imidazopyridazines Derivatives as Potent Pim-1 Kinase Inhibitors using Region-Focused CoMFA

  • Balasubramanian, Pavithra K.;Balupuri, Anand;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2017
  • Proviral Integration site of Moloney (Pim) murine Leukemia virus kinases is a serine/threonine specific protein kinase. It is largely involved in cell survival and proliferation. Pim-1 phosphorylates multiple cellular substrates to inhibit apoptosis and promote cell cycle progression. Over expression of Pim-1 kinase is observed in a range of malignancies and various solid cancers. High level of Pim-1 expression is seen in myeloma, acute myeloid leukemia, prostate cancer and liver carcinomas. Hence, Pim-1 is considered as an interesting cancer target. In the present study, we have performed region-focused CoMFA study on a series of imidazopyridazine derivatives as Pim-1 kinase inhibitors. A statistically acceptable region-focused CoMFA model ($q^2=0.571$; ONC=3; $r^2=0.909$) was developed. The model was then validated using Bootsrapping and progressive sampling. The contour map highlighted the regions favorable to increase the activity. Bulky substitutions in $R^2$ position of the phenyl ring could increase the activity. Similarly, small negative substitution in the $R^1$ position of the Pyridine ring could increase the activity considerably. Our results will be useful to design novel Pim-1 kinase inhibitors of this series.

The Role of Protein Kinase C and Protein Tyrosine Kinase in the Signal Transduction Pathway of Stimulus Induced by Endotoxin in Peripheral Blood Monocyte (말초혈액 단핵구에 대한 내독소 자극의 신호 전달에서 Protein Kinase C와 Protein Tyrosine Kinase의 역할)

  • Kim, Jae-Yeol;Park, Jae-Suk;Lee, Gwi-Lae;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.2
    • /
    • pp.338-348
    • /
    • 1997
  • Background : Endotoxin, the component of outermembrane of gram negative organism, plays an important role in the initiation and amplification of inflammatory reaction by its effects on inflammatory cells. Until recently, there have been continuing efforts to delinate the mechanisms of the signal trasduction pathway of endotoxin stimuli on inflammatory cells. By uncovering the mechanisms of signal transduction pathway of endotoxin stimuli, we can expect to have tools to control the excessive inflammatory responses which sometimes may be fatal to the involved host. It was generally accepted that endotoxin exerts its inflammatory effects through inflammatory cytokines that are produced by endotoxin-stimulated inflammatory cells and there were some reports on the importance of protein kinase C and protein tyrosine kinase activation in the production of inflammatory cytokines by endotoxin So we evaluated the effect of pretreatment of protein kinase C inhibitors (H7, Staurosporin) and protein tyrosine kinase inhibitors(Herbimycin, Genistein) on the endotoxin-stimulated cytokines(IL-8 & TNF-$\alpha$) mRNA expression. Method : Peripheral blood monocytes were isolated from healthy volunteers by Ficoll-Hypaque density gradient method and purified by adhesion to 60mm Petri dishes. Endotoxin(LPS 100ng/ml) was added to each dishes except one control dish, and each endotoxin-stimulated dishes was preincubated with H7, Staurosporin(protein kinase C inhibitor), Herbimycin or Genistein(protein tyrosine kinase inhibitor) respectively except one dish. Four hours later the endotoxin stimulation, total RNA was extracted and Northern blot analysis for IL-8 mRNA and TNF-$\alpha$ mRNA was done. Result : Endotoxin stimulation increased the expression of IL-8 mRNA and TNF-$\alpha$ mRNA expression in human peripheral blood monocyte as expected and the stimulatory effect of endotoxin on TNF-$\alpha$ mRNA expression was inhibited by protein kinase C inhibitors(H7, Staurosporin) and protein tyrosine kinase inhibitors (Herbimycin, Genistein). The inhibitory effect of each drugs was increased with increasing concentration. The stimulatory effect of endotoxin on IL-8 mRNA was also inhibited by H7 and protein tyrosine kinase inhibitors (Herbimycin, Genistein) dose-dependently but not by Staurosporin. Conclusion : Protein kinase C and protein tyrosine kinase are involved in the endotoxin induced signal transduction pathway in human peripheral blood monocyte.

  • PDF

The Effect of Tyrosine Kinase Inhibitors on the L-type Calcium Current in Rat Basilar Smooth Muscle Cells

  • Bai, Guang-Yi;Yang, Tae-Ki;Gwak, Yong-Geun;Kim, Chul-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.3
    • /
    • pp.215-220
    • /
    • 2006
  • Objective : Tyrosine kinase inhibitors may be useful in the management of cerebral vasospasm. It has not yet been reported whether L-type $Ca^{2+}$ channels playa role in tyrosine kinase inhibitors-induced vascular relaxation of cerebral artery. This study was undertaken to clarify the role of L-type $Ca^{2+}$ channels in tyrosine kinase inhibitors-induced vascular relaxation, and to investigate the effect of tyrosine kinase inhibitors on L-type $Ca^{2+}$ channels currents in freshly isolated smooth muscle cells from rat basilar artery. Methods : The isolation of rat basilar smooth muscle cells was performed by special techniques. The whole cell currents were recorded by whole cell patch clamp technique in freshly isolated smooth muscle cells from rat basilar artery. Results : Patch clamp studies revealed a whole-cell current which resembles the L-type $Ca^{2+}$ current reported by others. The amplitude of this current was decreased by nimodipine and increased by Bay K 8644. Genistein[n=5], tyrphostin A-23[n=3]. A-25[n=6] $30{\mu}M$ reduced the amplitude of the L -type $Ca^{2+}$ channel current in whole cell mode. In contrast, diadzein $30{\mu}M$ [n=3]. inactive analogue of genistein, did not decrease the amplitude of the L-type $Ca^{2+}$ channels current. Conclusion : These results suggest that tyrosine kinase inhibitors such as genistein, tyrphostin A-23, A-25 may relax cerebral vessel through decreasing level of intracellular calcium, [$Ca^{2+}$]i, by inhibition of L-type $Ca^{2+}$ channel.