• Title/Summary/Keyword: Khepera 로봇

Search Result 13, Processing Time 0.03 seconds

Fish School Simulation for Khepera Robot

  • Kim, Kyung-Hwan;Keigo, Watanabe
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.168.4-168
    • /
    • 2001
  • A great many species of fish congregate in schools, reducing the risk of being eaten by predators and giving one of the considerable survival advantages for fishes. Such a fish school is self-organized only due to individual behaviors for matching the speed and direction with the neighboring fishes. It is interesting to simulate these fish school by small robots, because we can understand how the group structure emerges from the interaction among neighboring individuals. We use a nice simulator for Khepera robot presented by Oliver Michel. It is shown that the Khepera simulator is easily applied to fish school due to the algorithm introduced by I Aoki. The simulator includes sensor noise so appropriately that the simulator can be transferred easily to the real environment. The results of simulation are given as follows: (1) The stability as a group is shown by plotting mean deviations from the center of group ...

  • PDF

Co-Evolution of Subsumption Architecture for Behavior Learning of Autonomous Mobile Robot (자율 이동 로봇의 행동 학습을 위한 포섭 구조의 공진화)

  • 김현영;허광승;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.28-31
    • /
    • 2002
  • 본 논문에서는 자율 이동 로봇의 학습을 위해 신경망과 진화 알고리즘을 이용한 방법을 제안한다. 이것은 자연계의 생물이 진화와 학습을 통해 환경에 적응해 나가는 방식과 유사하다. 또한 본 논문에서는 행동기반 제어 방법인 포섭구조를 이용해 로봇의 행동을 제어하는 방법을 제안한다 포섭 구조는 행동 규칙을 병렬적으로 모듈화 하여 낮은 레벨에서는 기본적인 행동을 담당하고, 높은 레벨에서는 좀 더 복잡한 행동을 담당하는 구조로 되어있다 따라서 각 행동 레벨이 협조를 함으로써 복잡한 임무를 수행할 수 있다. 포섭 구조에서 각 레벨의 제어기는 신경 망으로 구성하며 각 행동 레벨이 서로 영향을 주고받으며 진화함으로써 주어진 임무를 달성하도록 한다. 제안된 방법은 자율 이동 로봇인 Khepera 로봇을 이용해 실제 환경에서 구현함으로서 그 유효성을 입증한다.

  • PDF

Learning Robot Behaviors by Evolving Genetic Programs (유전자 프로그램의 진화를 이용한 자율이동로봇의 행동 학습)

  • 이광주;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.259-261
    • /
    • 2000
  • 주어진 환경에 대한 특별한 사전 지식 없이 그 환경에 적응할 수 있는 자율이동로봇을 설계할 때는 우선 특정한 상황에서만 유효한 가정들을 될 수 있는 대로 배제하여야 한다. 본 논문에서는 이러한 적응 능력을 갖춘 자율이동로봇을 설계하기 위한 일환으로 유전자 프로그램을 이용하여 로봇의 제어기를 표현하고, 이를 진화하여 로봇이 현재 자신의 주변에서 얻을 수 있는 정보에만 기초하여 목표물을 찾아가는 행동 규칙을 학습하도록 하였다. 로봇은 현재 자신이 놓여있는 환경에 대한 지도를 작성하지 않은 채 현재 자신의 주변에서 얻을 수 있는 지역적인 정보만으로 특정 목표물을 찾아가도록 학습된다. 로봇은 먼저 단층 퍼셉트론을 사용하여 주어진 공간내의 장애물과 목표물을 인지하도록 학습된다. 그 이후 학습된 퍼셉트론을 유전자 프로그램의 함수 노드로 사용하여 트리를 진화시켰다. Khepera 시뮬레이터를 이용한 실험 결과, 로봇은 제한된 지역 정보만을 사용하여 목표물을 찾아가는 행동 규칙을 매우 안정적으로 학습할 수 있었다.

  • PDF

Cooperative Co-evolution of Multi-Behavior Level in Subsumption Architecture (포섭 구조에서 다중 행동 레벨의 협조적 공진화)

  • 김현영;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.235-238
    • /
    • 2002
  • 본 논문에서는 자율 이동 로봇의 학습을 위해 신경망과 진화 알고리즘을 이용한 방법을 제안하고 또한 행동기반 제어 방법인 포섭구조를 이용해 로봇의 행동을 제어하는 방법을 제안한다. 포섭 구조는 기존의 Al방법과는 달리 행동 규칙을 병렬적으로 모듈화 하여 낮은 레벨에서는 기본적인 행동을 담당하고, 높은 레벨에서는 좀 더 복잡한 행동을 담당하는 구조로 되어있다. 따라서 각 행동 레벨이 협조를 함으로써 복잡한 임무를 수행할 수 있다 포섭 구조에서 각 레벨의 제어기는 신경망으로 구성하며 각 행동 레벨이 서로 영향을 주고받으며 진화함으로써 주어진 임무를 달성하도록 한다 제안된 방법은 자율 이동 로봇인 Khepera 로봇의 시뮬레이션을 통해 결과의 효율성을 입증한다.

A Design of the Recurrent NN Controller for Autonomous Mobil Robot by Coadaptation of Evolution and Learning (진화와 학습의 상호 적응에 의한 자발적 주행 로봇을 위한 재귀 신경망 제어기 설계)

  • Kim, Dae-Jin;Gang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.3
    • /
    • pp.27-38
    • /
    • 2000
  • This paper proposes how the recurrent neural network controller for a Khepera mobile robot with an obstacle avoiding ability can be determined by co-adaptation of the evolution and learning, The proposed co-adaptation scheme consists of two folds: a population of NN controllers are evolved by the genetic algorithm so that the degree of obstacle avoidance might be reduced through the global searching and each NN controller is trained by CRBP learning so that the running behavior is adapted to its outer environment through the local searching. Experimental results shows that the NN controller coadapted by evolution and learning outperforms its non-learning equivalent evolved by only genetic algorithm in both the ability of obstacle avoidance and the convergence speed reaching to the required running behavior.

  • PDF

Goal Inference of Behavior-Based Agent Using Bayesian Network (베이지안 네트워크를 이용한 행동기반 에이전트의 목적추론)

  • 김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.349-351
    • /
    • 2002
  • 베이지안 네트워크는 변수들간의 원인-결과 관계를 확률적으로 모델링하기 위한 도구로서 소프트웨어 사용자의 목적을 추론하기 위해 널리 이용된다. 행동기반 로봇 설계는 반응적(reactive) 행동 모듈을 효과적으로 결합하여 복잡한 행동을 생성하기 위한 접근 방법이다. 행동의 결합은 로봇의 목표, 외부환경, 행동들 사이의 관계를 종합적으로 고려하여 동적으로 이루어진다. 그러나 현재의 결합 모델은 사전에 설계자에 의해 구조가 결정되는 고정적인 형태이기 때문에 환경의 변화에 맞게 목표를 변화시키지 못한다. 본 연구에서는 베이지안 네트워크를 이용하여 현재 상황에 가장 적합한 로봇의 목표를 설정하여 유연한 행동선택을 유도한다. Khepera 이동로봇 시뮬레이터를 이용하여 실험을 수행해 본 결과 베이지안 네트워크를 적용한 모델이 상황에 적합하게 목적을 선택하여 문제를 해결하는 것을 알 수 있었다.

  • PDF

Learning Action Selection ,Network Using Learning Classifier System (Learning Classifier System을 이용한 행동 선택 네트워크의 학습)

  • 윤은경;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.404-406
    • /
    • 2003
  • 행동 기반 인공지능은 기본 행동들의 집합으로부터 적절한 행동을 선택함으로써 복잡한 행동을 하도록 하는 방식이다. 행동 기반 시스템은 1980년대에 시작되어 이제는 많은 에이전트 시스템에 사용되고 있다. 본 논문에서는 기존의 P. Maes가 제안한 행동 선택 네트워크에 Learning Classifier System을 이용한 학습 기능을 부가하여, 변하는 환경에 적절히 적응하여 행동의 시퀀스를 생성할 수 있는 방법을 제안하다. 행동 선택 네트워크는 주어진 문제에 따라 노드 간 연결을 설계자가 미리 설정하도록 하는데, 해결해야 할 문제가 변함에 따라 네트워크에서의 연결 형태가 변형될 필요가 있다. Khepera 로봇을 이용한 시뮬레이션 결과, 행동 선택 네트워크에서의 학습이 유용함을 확인할 수 있었다.

  • PDF

Evolution of autonomous mobile robot using genetic algorithms (유전자 알고리즘을 이용한 자율주형로봇의 진화진 관한 연구)

  • Yoo, Jae-Young;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2953-2955
    • /
    • 1999
  • In this paper, the concept of evolvable hardware and evolutionary robotics are introduced and constructing the mobile robot controller without human operator is suggested. The robot controller is evolved to avoid obstacles by genetic learning which determines the weights between sensor inputs and motor outputs. Genetic algorithms which is executed in a computer(PC) searches the best weights by interacting with robot performance under it's environment. The experiment is done by real mobile robot Khepera and a simple GA.

  • PDF

Planning Capability of Action Selection Network for Generating Optimal Behaviors of Agent (에이전트의 최적 행동 생성을 위한 행동선택 네트워크의 계획 기능)

  • 민현정;김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.473-475
    • /
    • 2003
  • 최근 빠른 시간에 행동을 표현할 수 있는 장점을 가진 반응형 시스템과 최적화된 시퀀스를 생성할 수 있는 계획에 기반만 시스템을 통합하기 위한 하이브리드 시스템의 연구가 활발히 진행되고 있다. 행동 네트워크 구조는 센서와 목적에 대한 외부연결과 행동들 사이의 내부연결을 통해 수동적으로 설계되지만. 자동적으로 행동을 생성할 수 있고 복잡한 문제에 적용할 수 있는 장점이 있다. 본 논문에서는 이동 에이전트의 행동을 생성하기 위한 최적화된 방법을 찾는 문제에 대해 이 행동 네트워크에 계획 기능을 부가함으로 행동 시퀀스를 최적화하는 방법을 제안한다. 행동 네트워크는 입력된 정보와 목적 정보를 가지고 다음에 수행할 행동을 선택하여 각 상황에 가장 높은 우선순위를 가지는 행동만을 선택한다. 이 행동 네트워크에서 선택된 모든 행동들을 몇 단계 앞서 수행시켜 가장 좋은 결과를 가져올 행동으로 다음의 행동을 선택하는 방법을 통하여 복잡하고 불확실한 환경에서 주어진 목표를 달성하기 위한 전체적인 최적 행동 시퀀스를 생성할 수 있다. Khepera 이동 로봇을 이용한 실험을 통해 제안한 행동 네트워크에 계획을 이용한 방법이 행동 네트워크 구조에서보다 더 적은 행동 시퀀스로 목적을 달성함을 알 수 있었다.

  • PDF