• Title/Summary/Keyword: Keypoint Extraction

Search Result 13, Processing Time 0.023 seconds

Keypoint-based Deep Learning Approach for Building Footprint Extraction Using Aerial Images

  • Jeong, Doyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.111-122
    • /
    • 2021
  • Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.

Extraction of kidney's feature points by SIFT algorithm in ultrasound image (SIFT 알고리즘으로 kidney 특징점 검출)

  • Kim, Sung-Jung;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.313-314
    • /
    • 2019
  • 본 논문에서는 특징점 검출 알고리즘을 적용하여 ultrasound image에서 특징점을 검출하는 것과 object dectection을 위한 keypoints가 object에 올바르게 위치하는지를 검증하는 실험을 진행한다. 특징점 검출을 위한 알고리즘으로는 Scale Invariant Feature Transform(SIFT)과 Harris corner detection 을 적용하여 검증한다.

  • PDF

Research Trends and Case Study on Keypoint Recognition and Tracking for Augmented Reality in Mobile Devices (모바일 증강현실을 위한 특징점 인식, 추적 기술 및 사례 연구)

  • Choi, Heeseung;Ahn, Sang Chul;Kim, Ig-Jae
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.45-55
    • /
    • 2015
  • In recent years, keypoint recognition and tracking technologies are considered as crucial task in many practical systems for markerless augmented reality. The keypoint recognition and technologies are widely studied in many research areas, including computer vision, robot navigation, human computer interaction, and etc. Moreover, due to the rapid growth of mobile market related to augmented reality applications, several effective keypoint-based matching and tracking methods have been introduced by considering mobile embedded systems. Therefore, in this paper, we extensively analyze the recent research trends on keypoint-based recognition and tracking with several core components: keypoint detection, description, matching, and tracking. Then, we also present one of our research related to mobile augmented reality, named mobile tour guide system, by real-time recognition and tracking of tour maps on mobile devices.

Keypoint Detection Using Normalized Higher-Order Scale Space Derivatives (스케일 공간 고차 미분의 정규화를 통한 특징점 검출 기법)

  • Park, Jongseung;Park, Unsang
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.93-96
    • /
    • 2015
  • The SIFT method is well-known for robustness against various image transformations, and is widely used for image retrieval and matching. The SIFT method extracts keypoints using scale space analysis, which is different from conventional keypoint detection methods that depend only on the image space. The SIFT method has also been extended to use higher-order scale space derivatives for increasing the number of keypoints detected. Such detection of additional keypoints detected was shown to provide performance gain in image retrieval experiments. Herein, a sigma based normalization method for keypoint detection is introduced using higher-order scale space derivatives.

Deep Learning-based Keypoint Filtering for Remote Sensing Image Registration (원격 탐사 영상 정합을 위한 딥러닝 기반 특징점 필터링)

  • Sung, Jun-Young;Lee, Woo-Ju;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.26-38
    • /
    • 2021
  • In this paper, DLKF (Deep Learning Keypoint Filtering), the deep learning-based keypoint filtering method for the rapidization of the image registration method for remote sensing images is proposed. The complexity of the conventional feature-based image registration method arises during the feature matching step. To reduce this complexity, this paper proposes to filter only the keypoints detected in the artificial structure among the keypoints detected in the keypoint detector by ensuring that the feature matching is matched with the keypoints detected in the artificial structure of the image. For reducing the number of keypoints points as preserving essential keypoints, we preserve keypoints adjacent to the boundaries of the artificial structure, and use reduced images, and crop image patches overlapping to eliminate noise from the patch boundary as a result of the image segmentation method. the proposed method improves the speed and accuracy of registration. To verify the performance of DLKF, the speed and accuracy of the conventional keypoints extraction method were compared using the remote sensing image of KOMPSAT-3 satellite. Based on the SIFT-based registration method, which is commonly used in households, the SURF-based registration method, which improved the speed of the SIFT method, improved the speed by 2.6 times while reducing the number of keypoints by about 18%, but the accuracy decreased from 3.42 to 5.43. Became. However, when the proposed method, DLKF, was used, the number of keypoints was reduced by about 82%, improving the speed by about 20.5 times, while reducing the accuracy to 4.51.

Depth-hybrid speeded-up robust features (DH-SURF) for real-time RGB-D SLAM

  • Lee, Donghwa;Kim, Hyungjin;Jung, Sungwook;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.33-44
    • /
    • 2018
  • This paper presents a novel feature detection algorithm called depth-hybrid speeded-up robust features (DH-SURF) augmented by depth information in the speeded-up robust features (SURF) algorithm. In the keypoint detection part of classical SURF, the standard deviation of the Gaussian kernel is varied for its scale-invariance property, resulting in increased computational complexity. We propose a keypoint detection method with less variation of the standard deviation by using depth data from a red-green-blue depth (RGB-D) sensor. Our approach maintains a scale-invariance property while reducing computation time. An RGB-D simultaneous localization and mapping (SLAM) system uses a feature extraction method and depth data concurrently; thus, the system is well-suited for showing the performance of the DH-SURF method. DH-SURF was implemented on a central processing unit (CPU) and a graphics processing unit (GPU), respectively, and was validated through the real-time RGB-D SLAM.

Multiple Object Tracking Using SIFT and Multi-Lateral Histogram (SIFT와 다중측면히스토그램을 이용한 다중물체추적)

  • Jun, Jung-Soo;Moon, Yong-Ho;Ha, Seok-Wun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • In multiple object tracking, accurate detection for each of objects that appear sequentially and effective tracking in complicated cases that they are overlapped with each other are very important. In this paper, we propose a multiple object tracking system that has a concrete detection and tracking characteristics by using multi-lateral histogram and SIFT feature extraction algorithm. Especially, by limiting the matching area to object's inside and by utilizing the location informations in the keypoint matching process of SIFT algorithm, we advanced the tracking performance for multiple objects. Based on the experimental results, we found that the proposed tracking system has a robust tracking operation in the complicated environments that multiple objects are frequently overlapped in various of directions.

Eye Region Extraction Using SIFT (SIFT를 이용한 눈동자영역 추출)

  • Jung, Jae-Jin;Hwang, Eui-Sung;Gong, Jae-Woong;Ju, Dong-Hyun;Kim, Doo-Young
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.41-44
    • /
    • 2006
  • 본 논문은 안면영상의 인증 요소로 사용되는 눈동자영역을 SIFT를 이용하여 추출해내는 방법을 제안하고 있다. 모델이 되는 눈동자영상과 추출 하고자 하는 입력영상의 SET 결과인 Keypoint descriptor를 이용하여 각각의 특징벡터를 구성하고 서로 정합한 후 두 특징 점들 사이에 affine transform이 존재하는지 판단하여 반수 이상에 대응하는 특징 점들에 대해 동일한 affine transform이 존재할 경우 눈동자영역이라고 판단하였다. 실험결과 학습과정이 없으므로 기존의 인식방법 보다 빠르게 영역을 추출하는 결과를 얻을 수 있었다.

  • PDF

Correction of Rotated Region in Medical Images Using SIFT Features (SIFT 특징을 이용한 의료 영상의 회전 영역 보정)

  • Kim, Ji-Hong;Jang, Ick-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, a novel scheme for correcting rotated region in medical images using SIFT(Scale Invariant Feature Transform) algorithm is presented. Using the feature extraction function of SIFT, the rotation angle of rotated object in medical images is calculated as follows. First, keypoints of both reference and rotated medical images are extracted by SIFT. Second, the matching process is performed to the keypoints located at the predetermined ROI(Region Of Interest) at which objects are not cropped or added by rotating the image. Finally, degrees of matched keypoints are calculated and the rotation angle of the rotated object is determined by averaging the difference of the degrees. The simulation results show that the proposed scheme has excellent performance for correcting the rotated region in medical images.

Remote Sensing Image Registration using Structure Extraction and Keypoint Filtering (구조물 검출 네트워크 및 특징점 필터링을 이용한 원격 탐사 영상 정합)

  • Sung, Jun-Young;Lee, Woo-Ju;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.300-304
    • /
    • 2020
  • 본 논문에서는 원격 탐사 영상 정합에서 정확도는 유지하면서 특징점 매칭 (Matching) 복잡도를 줄이기 위해 입력 영상을 전처리하는 구조물 검출 네트워크를 이용한 원격 탐사 영상 정합 방법을 제안한다. 영상 정합의 기존 방법은 입력 영상에서 특징점을 추출하고 설명자 (Descriptor)를 생성한다. 본 논문에서 제안하는 방법은 입력 영상에서 특징점 매칭에 영향을 미치는 구조물만 추출하여 새로운 영상을 만들어 특징점을 추출한다. 추출된 특징점은 필터링 (Filtering)을 거쳐 원본 영상에 매핑 (Mapping)되어 설명자를 생성하여 특징점 매칭 속도를 향상시킨다. 또한 구조물 검출 네트워크에서 학습 영상과 시험 영상의 특성의 차이로 생기는 성능 저하 문제를 개선하기 위해 히스토그램 매핑 기법을 이용한다. 아리랑 3 호가 획득한 원격 탐사 영상에 대한 실험을 통해 제안하는 방법은 정확도를 유지하면서 계산 시간을 SURF 보다 87.5%, SIFT 보다 92.6% 감소시킬 수 있다.

  • PDF