• 제목/요약/키워드: Key-insulation

검색결과 110건 처리시간 0.026초

공동주택용 외단열 동시타설 공법 적용을 위한 리스크 요인 평가 (Assessment of Risk Factors for Application of Exterior Insulation Board in Cast-in-place Concrete Form System for Apartment)

  • ;김태훈;임현수;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.204-205
    • /
    • 2015
  • Exterior insulation board in cast-in-place concrete form system could reduce construction period and improve quality in apartment construction. However, the method is progressed with insulation and concrete frame works at the same time, then risk is increased in duration control and quality management. Therefore, this paper analyzed risk factors through FMEA method. We found that the key risk factors delaying schedule was insulation material that soaked in the rain and quality defects on the insulation material joint. Based on this research, the risk management approach should be developed for improvement of method activation.

  • PDF

A PDPWM Based DC Capacitor Voltage Control Method for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Liu, Teng
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.660-669
    • /
    • 2015
  • This paper presents a control scheme with a focus on the combination of phase disposition pulse width modulation (PDPWM) and DC capacitor voltage control for a chopper-cell based modular multilevel converter (MMC) for the purpose of eliminating the time-consuming voltage sorting algorithm and complex voltage balancing regulators. In this paper, the convergence of the DC capacitor voltages within one arm is realized by charging the minimum voltage module and discharging the maximum voltage module during each switching cycle with the assistances of MAX/MIN capacitor voltage detection and PDPWM signals exchanging. The process of voltage balancing control introduces no extra switching commutation, which is helpful in reducing power loss and improving system efficiency. Additionally, the proposed control scheme also possess the merit of a simple executing procedure in application. Simulation and experimental results indicates that the MMC circuit together with the proposed method functions very well in balancing the DC capacitor voltage and improving system efficiency even under transient states.

An Innovative Fast Relay Coordination Method to Bypass the Time Consumption of Optimization Algorithms in Relay Protection Coordination

  • Kheshti, Mostafa;Kang, Xiaoning;Jiao, Zaibin
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.612-620
    • /
    • 2017
  • Relay coordination in power system is a complex problem and so far, meta-heuristic algorithms and other methods as an alternative approach may not properly deal with large scale relay coordination due to their huge time consuming computation. In some cases the relay coordination could be unachievable. As the urgency for a proper approach is essential, in this paper an innovative and simple relay coordination method is introduced that is able to be applied on optimization algorithms for relay protection coordination. The objective function equation of operating time of relays are divided into two separate functions with less constraints. As the analytical results show here, this equivalent method has a remarkable speed with high accuracy to coordinate directional relays. Two distribution systems including directional overcurrent relays are studied in DigSILENT software and the collected data are examined in MATLAB. The relay settings of this method are compared with particle swarm optimization and genetic algorithm. The analytical results show the correctness of this mathematical and practical approach. This fast coordination method has a proper velocity of convergence with low iteration that can be used in large scale systems in practice and also to provide a feasible solution for protection coordination in smart grids as online or offline protection coordination.

New Techniques for Impedance Characteristics Measurement of Islanded Microgrid based on Stability Analysis

  • Hou, Lixiang;Zhuo, Fang;Shi, Hongtao
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1163-1175
    • /
    • 2016
  • In recent years, microgrids have been the focus of considerable attention in distributed energy distribution. Microgrids contain a large number of power electronic devices that can potentially cause negative impedance instability. Harmonic impedance is an important tool to analyze stability and power quality of microgrids. Harmonic impedance can also be used in harmonic source localization. Precise measurement of microgrid impedance and analysis of system stability with impedances are essential to increase stability. In this study, we introduce a new square wave current injection method for impedance measurement and stability analysis. First, three stability criteria based on impedance parameters are presented. Then, we present a new impedance measurement method for microgrids based on square wave current injection. By injecting an unbalanced line-to-line current between two lines of the AC system, the method determines all impedance information in the traditional synchronous reference frame d-q model. Finally, the microgrid impedances of each part and the overall microgrid are calculated to verify the measurement results. In the experiments, a simulation model of a three-phase AC microgrid is developed using PSCAD, and the AC system harmonic impedance measuring device is developed.

A Novel Interleaving Control Scheme for Boost Converters Operating in Critical Conduction Mode

  • Yang, Xu;Ying, Yanping;Chen, Wenjie
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.132-137
    • /
    • 2010
  • Interleaving techniques are widely used to reduce input/output ripples and to increase the power capacity of boost converters operating in critical conduction mode. Two types of phase-shift control schemes are studied in this paper, the turn-on time shifting method and the turn-off time shifting method. It is found that although the turn-off time shifting method exhibits better performance, it suffers from sub-harmonic oscillations at high input voltages. To solve this problem, an intensive quantitative analysis of the sub-harmonic oscillation phenomenon is made in this paper. Based upon that, a novel modified turn off time shifting control scheme for interleaved boost converters operating in critical conduction mode is proposed. An important advantage of this scheme is that both the master phase and the slave phase can operate stably in critical conduction mode without any oscillations in the full input voltage range. This method is implemented with a FPGA based digital PWM control platform, and tests were carried out on a two-phase interleaved boost PFC converter prototype. Experimental results demonstrated the feasibility and performance of the proposed phase-shift control scheme.

전도냉각 HTS SMES 절연설계를 위한 전기적 특성연구 (A Study on the Electrical Properties for the Insulation Design of a Conduction-Cooled HTS SMES)

  • 최재형;곽동순;천현권;백승명;김해종;성기철;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.226-227
    • /
    • 2006
  • The conduction-cooled HTS SMES is operated in cryogenic and high vacuum condition. Thus, Insulation design at cryogenic temperature and high vacuum is a key and an important element that should be established to accomplish miniaturization that is a big advantage of HTS SMES. Therefore, we need active research and development of insulation concerning application of the conduction-cooled HTS SMES. Therefore, in this study, we experimented about insulation characteristic high vacuum and cryogenic similar to driving condition of SMES system. Also, investigated about insulation characteristic of suitable some materials to insulator for conduction-cooled HTS SMES. As this results, we possessed basis data for insulation materials selection and insulation design for development of 600 kJ class conduction-cooled HTS SMES.

  • PDF

다중판넬의 차음설계차트 (Design chart of sound insulation for multiple panels)

  • 강현주;김봉기;김상렬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.946-949
    • /
    • 2006
  • This study is a trial to make a design chart of sound insulation for multiple panel. Dilatational frequency, ${\Large f}_d$ becomes a key factor for optimal design since it acts like a turning point in sound insulation performance of such panels. Hence, in tuning the ${\Large f}_d$ optimally, elastic modulus of core material and thickness of the skin panel is designated to parameters. Based on these parameter, a design chart of sound insulation for multiple panel is made. Its applicability is proved by the case study of High noise reduction panel.

  • PDF

하이브리드 절연필름의 전동기권선 적용 특성 연구 (Technology and Application of Hybrid Insulation Film for Electric Magnet Wire)

  • 한세원;한동희;강동필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.210-211
    • /
    • 2006
  • This study presents the technology and application of hybrid insulation film for electric magnet wire. In order to make the high efficient motor with high space factor, it is necessary to develop a self-lubrication heat-resistant insulation film that can be used when the space factor 70% or more. A key to achieving high windability is to increase the lubricity and bonding strength of vanish, which for a magnet wire generally determines the mechanical scratches characteristics. Effective ways to reduce scratches include improving insulation film prepared by organic and inorganic hybrid synthesis methods.

  • PDF

전도냉각형 고온초전도 에너지저장장치의 전기적 특성 (A Study on the Electrical Properties of the Conduction-cooled HTS SMES System)

  • 최재형;곽동순;천현권;김해종;김상현
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.135-141
    • /
    • 2007
  • The conduction-cooled HTS SMES is operated in cryogenic and high vacuum condition. Thus, Insulation design at cryogenic temperature and high vacuum is a key and an important element that should be established to accomplish miniaturization that is a big advantage of HTS SMES. However, the behaviors of insulators for cryogenic conditions in vacuum are virtually unknown. Therefore, we need active research and development of insulation concerning application of the conduction-cooled HTS SMES. Therefore, in this study, we experimented about insulation characteristic high vacuum and cryogenic similar to driving condition of SMES system. Also, investigated about insulation characteristic of suitable some materials to insulator for conduction-cooled HTS SMES. As this results, we possessed basis data for insulation materials selection and insulation design for development of 600 kJ class conduction-cooled HTS SMES.

전도냉각형 고온초전도 SMES의 냉동기와 마그네트 간의 절연 특성 (Insulating Properties between Cryocooler and Magnet for the Conduction-Cooled HTS SMES System)

  • 최재형;곽동순;천현권;김해종;성기철;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권3호
    • /
    • pp.45-48
    • /
    • 2006
  • The conduction-cooled HTS SMES is operated in cryogenic and high vacuum condition. Thus. Insulation design at cryogenic temperature and high vacuum is a key and an important element that should be established to accomplish compact design is a big advantage of HTS SMES. However, the behaviors of insulators for cryogenic conditions in vacuum are virtually unknown. Therefore, active research and development of insulation concerning application of the conduction cooled HTS SMES was needed. In this study, the insulation characteristics at experimented high vacuum and cryogenic similar to running condition of SMES system. Also, investigated about insulation characteristics of suitable some materials to insulator for conduction-cooled HTS SMES. As these results. the basis data was obtained for insulation materials selection and insulation design for development of 600kJ class conduction-cooled HTS SMES.