• Title/Summary/Keyword: Key-insulation

Search Result 113, Processing Time 0.017 seconds

Experimental Study on Flow Direction of Fire Smoke in DC Electric Fields (DC 전기장 내에서 발생하는 화재연기 진행 방향에 대한 실험적 연구)

  • Park, Juwon;Kim, Youngmin;Seong, Seung Hun;Park, Sanghwan;Kim, Ji Hwan;Chung, Yongho;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.675-682
    • /
    • 2021
  • Fire accidents on land and at sea can cause serious casualties; specifically, owing to the nature of marine plants and ships, the mortality rate at sea from suffocation in confined spaces is significantly higher than that on land. To prevent such cases of asphyxiation, it is essential to install ventilation fans that can outwardly direct these toxic gases from fires; however, considering the scale of marine fires, the installation of large ventilation fans is not easy owing to the nature of marine structures. Therefore, in this study, we developed a new concept for fire safety technology to control toxic gases generated by fires from applied direct current (DC) electric fields. In the event of a fire, most flames contain large numbers of positive and negative charges from chemi-ionization, which generates an "ionic wind" by Lorentz forces through the applied electric fields. Using these ionic winds, an experimental study was performed to artificially control the fire smoke caused by burning paper and styrofoam, which are commonly used as insulation materials in general buildings and ships. The experiments showed that a fire smoke could be artificially controlled by applying a DC voltage in excess of ±5 kV and that relatively effective control was possible by applying a negative voltage rather than a positive voltage.

Dynamics of Temperature and Humidity Changes in Lentinula edodes Sawdust Cultivation Sheds (표고 톱밥재배사의 溫-濕度 變化 動態)

  • Koo, Chang-Duck;Kim, Je-Su;Lee, Hwa-Yong;You, Sung-Ryul;You, Chang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.748-756
    • /
    • 2009
  • The key for cultivating Lentinula edodes in sawdust bags with an appropriate strain and medium is to encourage the mushroom growth, while discouraging contaminating fungi by controlling environment, especially temperature and relative humidity (RH). To investigate the daily and seasonal fluctuation of temperature and RH in two L. edodes cultivation sheds types, HOBO data loggers was set and the collected data were analyzed. In a Taiwan type L. edodes cultivation shed, temperature and humidity changes were divided into five characteristic periods: mycelium growing winter, mushroom fruiting spring, mushroom fruiting early summer, mushroom nonfruiting summer and mushroom fruiting autumn. First, the mycelium growing winter was December to early March with daily mean temperature of $-1{\sim}8^{\circ}C$. Second, mushroom fruiting spring was mid March to late May with daily mean temperature of $8{\sim}21^{\circ}C$ and day-night temperature difference of $15^{\circ}C$. Third, the Mushroom fruiting early summer was early June to early July with 17 to $25^{\circ}C$. Fourth, nonfruiting summer was mid July to mid August with daily mean temperature of $25{\sim}28^{\circ}C$. Lastly, mushroom fruiting autumn was late August to October with daily mean temperature of $10{\sim}23^{\circ}C$ and with cyclic temperature change by $7^{\circ}C$ decrease and 5 increase every 5 to 7 days. In a Chinese type shed, temperature ranged $-1.9{\sim}5.0^{\circ}C$ during winter and $15{\sim}32^{\circ}C$ during June to October. Temperature and relative humidity changed $12{\sim}30^{\circ}C$ and 40~100%, respectively, depending on 0~150 cm shelf heights of by positions in the shed. In conclusion, to grow L. edodes but to discourage contaminating fungi, that is, not to be too high in temperature and RH, the growers changed temperature and RH by adjusting shading, aeration and insulation in the shed.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.