• 제목/요약/키워드: Key site

검색결과 897건 처리시간 0.03초

Reactions of Metal Catalysts with Polar Vinyl Monomers

  • Jordan Richard F.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.153-154
    • /
    • 2006
  • The development of metal catalysts that can polymerize or copolymerize "polar" $Ch_2=CHX$ monomers by insertion mechanisms would significantly expand the scope of metal-catalyzed polymerization and enable the synthesis of new materials with enhanced properties. We have studied the reactions of single-site olefin polymerization catalysts with vinyl chloride, acrylonitrile, and vinyl ethers, in order to probe monomer coordination trends, insertion rates and regioselectivity, and the structures and reactivity of metal alkyls that contain functional groups on the alpha and beta positions of the alkyl chain. These studies provide insights to the key issues that underlie the "polar monomer" problem. Copolymerization of olefins and selected vinyl ethers has been achieved.

  • PDF

Cotton GhKCH2, a Plant-specific Kinesin, is Low-affinitive and Nucleotide-independent as Binding to Microtubule

  • Xu, Tao;Sun, Xuewei;Jiang, Shiling;Ren, Dongtao;Liu, Guoqin
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.723-730
    • /
    • 2007
  • Kinesin is an ATP-driven microtubule motor protein that plays important roles in control of microtubule dynamics, intracellular transport, cell division and signal transduction. The kinesin superfamily is composed of numerous members that are classified into 14 subfamilies. Animal kinesins have been well characterized. In contrast, plant kinesins have not yet to be characterized adequately. Here, a novel plant-specific kinesin gene, GhKCH2, has been cloned from cotton (Gossypium hirsutum) fibers and biochemically identified by prokaryotic expression, affinity purification, ATPase activity assay and microtubule-binding analysis. The putative motor domain of GhKCH2, $M_{396-734}$ corresponding to amino acids Q396-N734 was fused with 6$\times$His-tag, soluble-expressed in E. coli and affinity-purified in a large amount. The biochemical analysis demonstrated that the basal ATPase activity of $M_{396-734}$ is not activated by $Ca^{2+}$, but stimulated 30-fold max by microtubules. The enzymatic activation is microtubule-concentration-dependent, and the concentration of microtubules that corresponds to half-maximum activation was about 11 ${\mu}M$, much higher than that of other kinesins reported. The cosedimentation assay indicated that $M_{396-734}$ could bind to microtubules in vitro whenever the nucleotide AMP-PNP is present or absent. As a plant-specific microtubule-dependent kinesin with a lower microtubule-affinity and a nucleotide-independent microtubule-binding ability, cotton GhKCH2 might be involved in the function of microtubules during the deposition of cellulose microfibrils in fibers or the formation of cell wall.

Biochemical Characterization of Exoribonuclease Encoded by SARS Coronavirus

  • Chen, Ping;Jiang, Miao;Hu, Tao;Liu, Qingzhen;Chen, Xiaojiang S.;Guo, Deyin
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.649-655
    • /
    • 2007
  • The nsp14 protein is an exoribonuclease that is encoded by severe acute respiratory syndrome coronavirus (SARS-CoV). We have cloned and expressed the nsp14 protein in Escherichia coli, and characterized the nature and the role(s) of the metal ions in the reaction chemistry. The purified recombinant nsp14 protein digested a 5'-labeled RNA molecule, but failed to digest the RNA substrate that is modified with fluorescein group at the 3'-hydroxyl group, suggesting a 3'-to-5' exoribonuclease activity. The exoribonuclease activity requires $Mg^{2+}$ as a cofactor. Isothermal titration calorimetry (ITC) analysis indicated a two-metal binding mode for divalent cations by nsp14. Endogenous tryptophan fluorescence and circular dichroism (CD) spectra measurements showed that there was a structural change of nsp14 when binding with metal ions. We propose that the conformational change induced by metal ions may be a prerequisite for catalytic activity by correctly positioning the side chains of the residues located in the active site of the enzyme.

PKI 인증과 FIDO 인증에 대한 비교 분석 (A Comparative Analysis of PKI Authentication and FIDO Authentication)

  • 박승철
    • 한국정보통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1411-1419
    • /
    • 2017
  • PKI(Public Key Infrastructure) 인증은 개인키 소지(possession)와 개인키 보호 패스워드 지식(knowledge)이라는 2 요소 인증(2 factor authentication) 능력과 안전한 공개키 암호 프로토콜을 통해 인터넷 거래의 신뢰 인프라 구축에 많은 기여를 해왔다. 하나의 인증서로 모든 PKI 사이트를 접근할 수 있는 점도 PKI 인증의 활성화에 기여하였다. 그럼에도 불구하고 인증서 인프라 구축 비용, 인증서 관리에 따른 사용자 불편함, 그리고 개인키 보호 패스워드 관리의 어려움 등에 따른 여러 가지 문제점들이 노출되어 왔다. 최근에 주목받고 있는 FIDO(Fast IDentity Online) 인증은 PKI 인증과 같이 공개키 암호 프로토콜에 기초한 강력한 인증 서비스를 제공하면서도 사용자별 인증서 발급이 불필요하고, 생체 인증 등과 결합하여 안전하고 편리한 인증 서비스 제공을 추구하고 있다. 본 논문은 PKI 인증과 FIDO 인증의 동작 방식을 구체적으로 비교하여 각각의 장단점을 분석하고, 그에 따른 각각의 응용 분야를 제시하는 데 목적이 있다.

Distinct mutations in MLH1 and MSH2 genes in Hereditary Non-polyposis Colorectal Cancer (HNPCC) families from China

  • Wei, Wenqian;Liu, Fangqi;Liu, Lei;Li, Zuofeng;Zhang, Xiaoyan;Jiang, Fan;Shi, Qu;Zhou, Xiaoyan;Sheng, Weiqi;Cai, Sanjun;Li, Xuan;Xu, Ye;Nan, Peng
    • BMB Reports
    • /
    • 제44권5호
    • /
    • pp.317-322
    • /
    • 2011
  • Hereditary non-polyposis Colorectal Cancer (HNPCC) is an autosomal dominant inheritance syndrome. HNPCC is the most common hereditary variant of colorectal cancer (CRC), which accounts for 2-5% CRCs, mainly due to hMLH1 and hMSH2 mutations that impair DNA repair functions. Our study aimed to identify the patterns of hMSH2 and hMLH1 mutations in Chinese HNPCC patients. Ninety-eight unrelated families from China meeting Amsterdam or Bethesda criteria were included in our study. Germline mutations in MLH1 and MSH2 genes, located in the exons and the splice-site junctions, were screened in the 98 probands by direct sequencing. Eleven mutations were found in ten patients (11%), with six in MLH1 (54.5%) and five in MSH2 (45.5%) genes. One patient had mutations in both MLH1 and MSH2 genes. Three novel mutations in MLH1 gene (c.157_160delGAGG, c.2157dupT and c.-64G>T) were found for the first time, and one suspected hotspot in MSH2 (c.1168C>T) was revealed.

Mechanical evolution law and deformation characteristics of preliminary lining about newly-built subway tunnel closely undercrossing the existing station: A case study

  • Huijian Zhang;Gongning Liu;Weixiong Liu;Shuai Zhang;Zekun Chen
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.525-538
    • /
    • 2023
  • The development of a city is closely linked to the construction and operation of its subway system. However, constructing a new subway tunnel under an existing station is an extremely complex task, and the deformation characteristics and mechanical behavior of the new subway tunnel during the excavation process can greatly impact the normal operation of the existing station. Although the previous studies about the case of underpass engineering have been carried out, there is limited research on the condition of a newly-built subway tunnel that closely undercrossing an existing station with zero distance between them. Therefore, this study analyzes the deformation law and mechanical behavior characteristics of the preliminary lining of the underpass tunnel during the excavation process based on the real engineering case of Chengdu Metro Line 8. This study also makes an in-depth comparison of the influence of different excavation methods on this issue. Finally, the accuracy of numerical simulation is verified by comparing it with on-site result. The results indicate that the maximum bending moment mainly occurs at the floor slab of the preliminary lining, while that of the ceiling is small. The stress state at the ceiling position is less affected by the construction process of the pilot tunnel. Compared to the all-in-one excavation method, although the process of partial excavation method is more complicated, the deformation of preliminary lining caused by it is basically less than the upper limit value of the standard, while that of the all-in-one excavation method is beyond standard requirements.

Study on bearing capacity of combined confined concrete arch in large-section tunnel

  • Jiang Bei;Xu Shuo;Wang Qi;Xin Zhong Xin;Wei Hua Yong;Ma Feng Lin
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.117-126
    • /
    • 2024
  • There are many challenges in the construction of large-section tunnels, such as extremely soft rock and fractured zones. In order to solve these problems, the confined concrete support technology is proposed to control the surrounding rocks. The large-scale laboratory test is carried out to clarify mechanical behaviours of the combined confined concrete and traditional I-steel arches. The test results show that the bearing capacity of combined confined concrete arch is 3217.5 kN, which is 3.12 times that of the combined I-steel arch. The optimum design method is proposed to select reasonable design parameters for confined concrete arch. The parametric finite element (FE) analysis is carried out to study the effect of the design factors via optimum design method. The steel pipe wall thickness and the longitudinal connection ring spacing have a significant effect on the bearing capacity of the combined confined concrete arch. Based on the above research, the confined concrete support technology is applied on site. The field monitoring results shows that the arch has an excellent control effect on the surrounding rock deformation. The results of this research provide a reference for the support design of surrounding rocks in large-section tunnels.

Casein Kinase 2 interacts with human mitogen- and stress-activated protein kinase MSK1 and phosphorylates it at Multiple sites

  • Shi, Yan;Han, Guanghui;Wu, Huiling;Ye, Kan;Tian, Zhipeng;Wang, Jiaqi;Shi, Huili;Ye, Mingliang;Zou, Hanfa;Huo, Keke
    • BMB Reports
    • /
    • 제42권12호
    • /
    • pp.840-845
    • /
    • 2009
  • Mitogen- and stress-activated protein kinase (MSK1) palys a crucial role in the regulation of transcription downstream of extracellular-signal-regulated kinase1/2 (ERK1/2) and mitogen-activated protein kinase p38. MSK1 can be phosphorylated and activated in cells by both ERK1/2 and p38$\alpha$. In this study, Casein Kinase 2 (CK2) was identified as a binding and regulatory partner for MSK1. Using the yeast two-hybrid system, MSK1 was found to interact with the CK2$\beta$ regulatory subunit of CK2. Interactions between MSK1 and the CK2$\alpha$ catalytic subunit and CK2$\beta$ subunit were demonstrated in vitro and in vivo. We further found that CK2$\alpha$ can only interact with the C-terminal kinase domain of MSK1. Using site-directed mutagenesis assay and mass spectrometry, we identified five sites in the MSK1 C-terminus that could be phosphorylated by CK2 in vitro: Ser757, Ser758, Ser759, Ser760 and Thr793. Of these, Ser757, Ser759, Ser760 and Thr793 were previously unknown.

CK2 phosphorylates AP-2α and increases its transcriptional activity

  • Ren, Kaiqun;Xiang, Shuanglin;He, Fangli;Zhang, Wenfeng;Ding, Xiaofeng;Wu, Yanyang;Yang, Liping;Zhou, Jianlin;Gao, Xiang;Zhang, Jian
    • BMB Reports
    • /
    • 제44권7호
    • /
    • pp.490-495
    • /
    • 2011
  • Transcription factor AP-$2{\alpha}$ involves in the process of mammalian embryonic development and tumorigenesis. Many studies have shown that AP-$2{\alpha}$ functions in association with other interacting proteins. In a two-hybrid screening, the regulatory subunit ${\beta}$ of protein casein kinase 2 ($CK2{\beta}$) was identified as an interacting protein of AP-$2{\alpha}$; we confirmed this interaction using in-vitro GST pull-down and in-vivo co-immunoprecipitation assays; in an endogenous co-immunoprecipitation experiment, we further found the catalytic subunit ${\alpha}$ of protein casein kinase 2 ($CK2{\alpha}$) also exists in the complex. Phosphorylation analysis revealed that AP-$2{\alpha}$ was phosphorylated by CK2 kinase majorly at the site of Ser429, and such phosphorylation could be blocked by CK2 specific inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) in a dose-dependent manner. Luciferase assays demonstrated that both $CK2{\alpha}$ and $CK2{\beta}$ enhanced the transcription activity of AP-$2{\alpha}$; moreover, $CK2{\beta}$ increased the stability of AP-$2{\alpha}$. Our data suggest a novel cellular function of CK-2 as a transcriptional co-activator of AP-$2{\alpha}$.

Novel reassortant 2.3.4.4B H5N6 highly pathogenic avian influenza viruses circulating among wild, domestic birds in Xinjiang, Northwest China

  • Zhang, Qian;Mei, Xindi;Zhang, Cheng;Li, Juan;Chang, Nana;Aji, Dilihuma;Shi, Weifeng;Bi, Yuhai;Ma, Zhenghai
    • Journal of Veterinary Science
    • /
    • 제22권4호
    • /
    • pp.43.1-43.10
    • /
    • 2021
  • Background: The H5 avian influenza viruses (AIVs) of clade 2.3.4.4 circulate in wild and domestic birds worldwide. In 2017, nine strains of H5N6 AIVs were isolated from aquatic poultry in Xinjiang, Northwest China. Objectives: This study aimed to analyze the origin, reassortment, and mutations of the AIV isolates. Methods: AIVs were isolated from oropharyngeal and cloacal swabs of poultry. Identification was accomplished by inoculating isolates into embryonated chicken eggs and performing hemagglutination tests and reverse transcription polymerase chain reaction (RT-PCR). The viral genomes were amplified with RT-PCR and then sequenced. The sequence alignment, phylogenetic, and molecular characteristic analyses were performed by using bioinformatic software. Results: Nine isolates originated from the same ancestor. The viral HA gene belonged to clade 2.3.4.4B, while the NA gene had a close phylogenetic relationship with the 2.3.4.4C H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated from shoveler ducks in Ningxia in 2015. The NP gene was grouped into an independent subcluster within the 2.3.4.4B H5N8 AIVs, and the remaining six genes all had close phylogenetic relationships with the 2.3.4.4B H5N8 HPAIVs isolated from the wild birds in China, Egypt, Uganda, Cameroon, and India in 2016-2017, Multiple basic amino acid residues associated with HPAIVs were located adjacent to the cleavage site of the HA protein. The nine isolates comprised reassortant 2.3.4.4B HPAIVs originating from 2.3.4.4B H5N8 and 2.3.4.4C H5N6 viruses in wild birds. Conclusions: These results suggest that the Northern Tianshan Mountain wetlands in Xinjiang may have a key role in AIVs disseminating from Central China to the Eurasian continent and East African.