• 제목/요약/키워드: Key criterion

검색결과 235건 처리시간 0.029초

Predictive models of ultimate and serviceability performances for underground twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • 제10권2호
    • /
    • pp.175-188
    • /
    • 2016
  • The construction of a new cavern modifies the state of stresses and displacements in a zone around the existing cavern. For multiple caverns, the size of this influence zone depends on the ground type, the in situ stress, the cavern span and shape, the width of the pillar separating the caverns, and the excavation sequence. Performances of underground twin caverns can be unsatisfactory as a result of either instability (collapse) or excessive displacements. These two distinct failures should be prevented in design. This study simulated the ultimate and serviceability performances of underground twin rock caverns of various sizes and shapes. The global factor of safety is used as the criterion for determining the ultimate limit state and the calculated maximum displacement around the cavern opening is adopted as the serviceability limit state criterion. Based on the results of a series of numerical simulations, simple regression models were developed for estimating the global factor of safety and the maximum displacement, respectively. It was proposed that a proper pillar width can be determined based on the threshold influence factor value. In addition, design charts with regard to the selection of the pillar width for underground twin rock caverns under similar ground conditions were also developed.

Energy Efficiency Optimization for multiuser OFDM-based Cognitive Heterogeneous networks

  • Ning, Bing;Zhang, Aihua;Hao, Wanming;Li, Jianjun;Yang, Shouyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2873-2892
    • /
    • 2019
  • Reducing the interference to the licensed mobile users and obtaining the energy efficiency are key issues in cognitive heterogeneous networks. A corresponding rate loss constraint is proposed to be used for the sensing-based spectrum sharing (SBSS) model in cognitive heterogeneous networks in this paper. Resource allocation optimization strategy is designed for the maximum energy efficiency under the proposed interference constraint together with average transmission power constraint. An efficiency algorithm is studied to maximize energy efficiency due to the nonconvex optimal problem. Furthermore, the relationship between the proposed protection criterion and the conventional interference constraint strategy under imperfect sensing condition for the SBSS model is also investigated, and we found that the conventional interference threshold can be regarded as the upper bound of the maximum rate loss that the primary user could tolerate. Simulation results have shown the effectiveness of the proposed protection criterion overcome the conventional interference power constraint.

Comparison of Asset Management Approaches to Optimize Navigable Waterway Infrastructure

  • Oni, Bukola;Madson, Katherine;MacKenzie, Cameron
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.3-10
    • /
    • 2022
  • An estimated investment gap of $176 billion needs to be filled over the next ten years to improve America's inland waterway transportation systems. Many of these infrastructure systems are now beyond their original 50-year design life and are often behind in maintenance due to funding constraints. Therefore, long-term maintenance strategies (i.e., asset management (AM) strategies) are needed to optimize investments across these waterway systems to improve their condition. Two common AM strategies include policy-driven maintenance and performance-driven maintenance. Currently, limited research exists on selecting the optimal AM approach for managing inland waterway transportation assets. Therefore, the goal of this study is to provide a decision model that can be used to select the optimal alternative between the two AM approaches by considering key uncertainties such as asset condition, asset test results, and asset failure. We achieve this goal by addressing the decision problem as a single-criterion problem, which calculates each alternative's expected value and certain equivalence using allocated monetary values to determine the recommended alternative for optimally maintaining navigable waterways. The decision model considers estimated and predicted values based on the current state of the infrastructure. This research concludes that the performance-based approach is the optimal alternative based on the expected value obtained from the analysis. This research sets the stage for further studies on fiscal constraints that will effectively optimize these assets condition.

  • PDF

Robust transformer-based anomaly detection for nuclear power data using maximum correntropy criterion

  • Shuang Yi;Sheng Zheng;Senquan Yang;Guangrong Zhou;Junjie He
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1284-1295
    • /
    • 2024
  • Due to increasing operational security demands, digital and intelligent condition monitoring of nuclear power plants is becoming more significant. However, establishing an accurate and effective anomaly detection model is still challenging. This is mainly because of data characteristics of nuclear power data, including the lack of clear class labels combined with frequent interference from outliers and anomalies. In this paper, we introduce a Transformer-based unsupervised model for anomaly detection of nuclear power data, a modified loss function based on the maximum correntropy criterion (MCC) is applied in the model training to improve the robustness. Experimental results on simulation datasets demonstrate that the proposed Trans-MCC model achieves equivalent or superior detection performance to the baseline models, and the use of the MCC loss function is proven can obviously alleviate the negative effect of outliers and anomalies in the training procedure, the F1 score is improved by up to 0.31 compared to Trans-MSE on a specific dataset. Further studies on genuine nuclear power data have verified the model's capability to detect anomalies at an earlier stage, which is significant to condition monitoring.

상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합 (Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints)

  • 김현철;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

Shear strength prediction of high strength steel reinforced reactive powder concrete beams

  • Qi-Zhi Jin;Da-Bo He;Xia Cao;Feng Fu;Yi-Cong Chen;Meng Zhang;Yi-Cheng Ren
    • Advances in concrete construction
    • /
    • 제17권2호
    • /
    • pp.75-92
    • /
    • 2024
  • High Strength steel reinforced Reactive Powder Concrete (RPC) Beam is a new type of beams which has evident advantages than the conventional concrete beams. However, there is limited research on the shear bearing capacity of high-strength steel reinforced RPC structures, and there is a lack of theoretical support for structural design. In order to promote the application of high-strength steel reinforced RPC structures in engineering, it is necessary to select a shear model and derive applicable calculation methods. By considering the shear span ratio, steel fiber volume ratio, longitudinal reinforcement ratio, stirrup ratio, section shape, horizontal web reinforcement ratio, stirrup configuration angle and other variables in the shear test of 32 high-strength steel reinforced RPC beams, the applicability of three theoretical methods to the shear bearing capacity of high-strength steel reinforced RPC beams was explored. The plasticity theory adopts the RPC200 biaxial failure criterion, establishes an equilibrium equation based on the principle of virtual work, and derives the calculation formula for the shear bearing capacity of high-strength steel reinforced RPC beams; Based on the Strut and Tie Theory, considering the softening phenomenon of RPC, a failure criterion is established, and the balance equation and deformation coordination condition of the combined force are combined to derive the calculation formula for the shear bearing capacity of high-strength reinforced RPC beams; Based on the Rankine theory and Rankine failure criterion, taking into account the influence of size effects, a calculation formula for the shear bearing capacity of high-strength reinforced RPC beams is derived. Experimental data is used for verification, and the results are in good agreement with a small coefficient of variation.

The mechanism of rockburst-outburst coupling disaster considering the coal-rock combination: An experiment study

  • Du, Feng;Wang, Kai;Guo, Yangyang;Wang, Gongda;Wang, Liang;Wang, Yanhai
    • Geomechanics and Engineering
    • /
    • 제22권3호
    • /
    • pp.255-264
    • /
    • 2020
  • With the ongoing development of deep mining of coal resources, some coal mine dynamic disasters have exhibited characteristics of both coal-gas outbursts and rockbursts. Therefore, research is required on the mechanism of rockburst-outburst coupling disaster. In this study, the failure characteristics of coal-rock combination structures were investigated using lab-scale physical simulation experiments. The energy criterion of the rockburst-outburst coupling disaster was obtained, and the mechanism of the disaster induced by the gas-solid coupling instability of the coal-rock combination structure was determined. The experimental results indicate that the damage of the coal-rock structure is significantly different from that of a coal body. The influence of the coal-rock structure should be considered in the study of rockburst-outburst coupling disaster. The deformation degree of the roof is controlled by the more significant main role of the gas pressure and the difference in the strength between the rock body and the coal body. The outburst holes and spall characteristics of the coal body after the failure of the coal-rock structure are strongly affected by the difference in strength between the roof and the coal body. The research results provide an in-depth understanding of the mechanism of rockburst-outburst coupling disasters in deep mining.

Application of model reduction technique and structural subsection technique on optimal sensor placement of truss structures

  • Lu, Lingling;Wang, Xi;Liao, Lijuan;Wei, Yanpeng;Huang, Chenguang;Liu, Yanchi
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.355-373
    • /
    • 2015
  • An optimal sensor placement (OSP) method based on structural subsection technique (SST) and model reduction technique was proposed for modal identification of truss structures, which was conducted using genetic algorithm (GA). The constraints of GA variables were determined by SST in advance. Subsequently, according to model reduction technique, the optimal group of master degrees of freedom and the optimal objective function value were obtained using GA in a case of the given number of sensors. Correspondingly, the optimal number of sensors was determined according to optimal objective function values in cases of the different number of sensors. The proposed method was applied on a scaled jacket offshore platform to get its optimal number of sensors and the corresponding optimal sensor layout. Then modal kinetic energy and modal assurance criterion were adopted to evaluate vibration energy and mode independence property. The experiment was also conducted to verify the effectiveness of the selected optimal sensor layout. The results showed that experimental modes agreed reasonably well with numerical results. Moreover the influence of the proposed method using different optimal algorithms and model reduction technique on optimal results was also compared. The results showed that the influence was very little.

Hydraulic fracture initiation pressure of anisotropic shale gas reservoirs

  • Zhu, Haiyan;Guo, Jianchun;Zhao, Xing;Lu, Qianli;Luo, Bo;Feng, Yong-Cun
    • Geomechanics and Engineering
    • /
    • 제7권4호
    • /
    • pp.403-430
    • /
    • 2014
  • Shale gas formations exhibit strong mechanical and strength anisotropies. Thus, it is necessary to study the effect of anisotropy on the hydraulic fracture initiation pressure. The calculation model for the in-situ stress of the bedding formation is improved according to the effective stress theory. An analytical model of the stresses around wellbore in shale gas reservoirs, in consideration of stratum dip direction, dip angle, and in-situ stress azimuth, has been built. Besides, this work established a calculation model for the stress around the perforation holes. In combination with the tensile failure criterion, a prediction model for the hydraulic fracture initiation pressure in the shale gas reservoirs is put forward. The error between the prediction result and the measured value for the shale gas reservoir in the southern Sichuan Province is only 3.5%. Specifically, effects of factors including elasticity modulus, Poisson's ratio, in-situ stress ratio, tensile strength, perforation angle (the angle between perforation direction and the maximum principal stress) of anisotropic formations on hydraulic fracture initiation pressure have been investigated. The perforation angle has the largest effect on the fracture initiation pressure, followed by the in-situ stress ratio, ratio of tensile strength to pore pressure, and the anisotropy ratio of elasticity moduli as the last. The effect of the anisotropy ratio of the Poisson's ratio on the fracture initiation pressure can be ignored. This study provides a reference for the hydraulic fracturing design in shale gas wells.

AUTOMATIC DETECTION AND EXTRACTION ALGORITHM OF INTER-GRANULAR BRIGHT POINTS

  • Feng, Song;Ji, Kai-Fan;Deng, Hui;Wang, Feng;Fu, Xiao-Dong
    • 천문학회지
    • /
    • 제45권6호
    • /
    • pp.167-173
    • /
    • 2012
  • Inter-granular Bright Points (igBPs) are small-scale objects in the Solar photosphere which can be seen within dark inter-granular lanes. We present a new algorithm to automatically detect and extract igBPs. Laplacian and Morphological Dilation (LMD) technique is employed by the algorithm. It involves three basic processing steps: (1) obtaining candidate "seed" regions by Laplacian; (2) determining the boundary and size of igBPs by morphological dilation; (3) discarding brighter granules by a probability criterion. For validating our algorithm, we used the observed samples of the Dutch Open Telescope (DOT), collected on April 12, 2007. They contain 180 high-resolution images, and each has a $85{\times}68\;arcsec^2$ field of view (FOV). Two important results are obtained: first, the identified rate of igBPs reaches 95% and is higher than previous results; second, the diameter distribution is $220{\pm}25km$, which is fully consistent with previously published data. We conclude that the presented algorithm can detect and extract igBPs automatically and effectively.