• Title/Summary/Keyword: Key Update

Search Result 206, Processing Time 0.027 seconds

Access Control to XML Documents Based on Hierarchical Key Assignment Scheme (계층적 키 할당 기법을 기반으로 하는 XML 문서의 접근제어)

  • Ban, Yong-Ho;Kim, Jong-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1520-1530
    • /
    • 2005
  • As XML is recognized as a prevalent standard for document representation and exchange in the Internet, the need for security of XML becomes very important issue. Until now researches on XML security have been focused on confidentiality or integrity like encryption and digital signature technology. But, as XML data becomes more massive and complicated, it requires managerial security that decided access permit or deny by the authority oi user who is using the XML data. Thus it requires models and mechanisms enabling the specification and enforcement of access control policies for XML documents. In this paper, we suggest the new access control model and mechanism that separate XML documents by access level, assign roles to each user by applying Role Based Access Control (RBAC) and perform access control to specific documents by encrypting each section with roles. The method, we suggested, has an advantage that it does not need to update the whole keys used in encryption process by updating only the relations between appropriate secure layers.

  • PDF

Efficient RBAC based on Block Chain for Entities in Smart Factory (스마트 팩토리 엔터티를 위한 블록체인 기반의 효율적인 역할기반 접근제어)

  • Lee, YongJoo;Lee, Sang-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.69-75
    • /
    • 2018
  • The key technology of Industry 4.0, Smart factory is evaluated as the driving force of our economic development hereafter and a lot of researches have been established. Various entities including devices, products and managers exist in smart factory, but roles of these entities may be continuous or variable and can become extinct not long after. Existing methods for access control are not suitable to adapt to the variable environment. If we don't consider certain security level, important industrial data can be the targets of attacks. We need a new access control method satisfying desired level of efficiency and security without excessive system loads. In this paper, we propose a new RBAC-PAC which extend AC defined for PKC to the authority attribute of roles. We distribute PACs for roles through block chain method to provide the efficient access control. We verified that RBAC-PAC is more efficient in the smart factory with large number of entities which need a frequent permission update.

Secure and Energy Efficient Protocol based on Cluster for Wireless Sensor Networks (무선 센서 네트워크에서 안전하고 에너지 효율적인 클러스터 기반 프로토콜)

  • Kim, Jin-Su;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.14-24
    • /
    • 2010
  • Because WSNs operate with limited resources of sensor nodes, its life is extended by cluster-based routing methods. In this study, we use data on direction, distance, density and residual energy in order to maximize the energy efficiency of cluster-based routing methods. Through this study, we expect to minimize the frequency of isolated nodes when selecting a new cluster head autonomously using information on the direction of the upper cluster head, and to reduce energy consumption by switching sensor nodes, which are included in both of the new cluster and the previous cluster and thus do not need to update information, into the sleep mode and updating information only for newly included sensor nodes at the setup phase using distance data. Furthermore, we enhance overall network efficiency by implementing secure and energy-efficient communication through key management robust against internal and external attacks in cluster-based routing techniques. This study suggests the modified cluster head selection scheme which uses the conserved energy in the steady-state phase by reducing unnecessary communications of unchanged nodes between selected cluster head and previous cluster head in the setup phase, and thus prolongs the network lifetime and provides secure and equal opportunity for being cluster head.

Formal Model of Extended Reinforcement Learning (E-RL) System (확장된 강화학습 시스템의 정형모델)

  • Jeon, Do Yeong;Song, Myeong Ho;Kim, Soo Dong
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.13-28
    • /
    • 2021
  • Reinforcement Learning (RL) is a machine learning algorithm that repeat the closed-loop process that agents perform actions specified by the policy, the action is evaluated with a reward function, and the policy gets updated accordingly. The key benefit of RL is the ability to optimze the policy with action evaluation. Hence, it can effectively be applied to developing advanced intelligent systems and autonomous systems. Conventional RL incoporates a single policy, a reward function, and relatively simple policy update, and hence its utilization was limited. In this paper, we propose an extended RL model that considers multiple instances of RL elements. We define a formal model of the key elements and their computing model of the extended RL. Then, we propose design methods for applying to system development. As a case stud of applying the proposed formal model and the design methods, we present the design and implementation of an advanced car navigator system that guides multiple cars to reaching their destinations efficiently.

Gaussian mixture model for automated tracking of modal parameters of long-span bridge

  • Mao, Jian-Xiao;Wang, Hao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.243-256
    • /
    • 2019
  • Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.

A Study On the Renewal System of Domestic High Definition Maps (우리나라 정밀도로지도의 갱신체계에 관한 연구)

  • SEOL, Jae-Hyuk;LEE, Won-Jong;CHOI, Yun-Soo;JEONG, In-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.133-145
    • /
    • 2019
  • Building and researching high definition maps that support autonomous vehicles, one of Korea's key challenges for the future, are being actively propelled in both private and government sectors with the goal of fast commercialization. Under this perspective, update methods that secure up-to-date information are emerging as key tasks. To provide a plan for establishing efficient renewal systems for high definition maps, we analyzed the present condition of road types, causes of road changes and its annual change rates, and examined where and how such road change information is managed. Furthermore, the method of collection and detection of road change information and the renewal system of high definition maps are defined based on the current study. At the end of the paper, a step-by-step renewal system is proposed through the examination of renewal cycles, contents, and region of high definition maps.

WMPS: A Positioning System for Localizing Legacy 802.11 Devices

  • Gallo, Pierluigi;Garlisi, Domenico;Giuliano, Fabrizio;Gringoli, Francesco;Tinnirello, Ilenia
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.106-116
    • /
    • 2012
  • The huge success of location-aware applications has called for the rapid development of an alternative positioning system to the global positioning system (GPS) for indoor localization based on existing technologies, such as 802.11 wireless networks. This paper proposes the Wireless MAC Processor Positioning System (WMPS), which is a localization system running on off-the-shelf 802.11 Access Points and based on the time-of-flight ranging of users' standard terminals. This paper proves through extensive experiments that the propagation delays can be measured with the accuracy required by indoor applications despite the different noise components that can affect the result: latencies of the hardware transreceivers, multipath, ACK jitters and timer quantization. Key to this solution is the choice of the Wireless MAC Processor architecture, which enables a straightforward implementation of the ranging subsystem directly inside the commercial cards without affecting the basic DCF channel access algorithm. In addition to the proposed measurement framework, this study developed a simple and effective localization algorithm that can work without requiring any preliminary calibration or device characterization. Finally, the architecture allows the measurement methodology to be adjusted as a function of the network load or propagation environments at the run time, without requiring any firmware update.

  • PDF

LOW-LEVEL RADIO EMISSION FROM RADIO GALAXIES AND IMPLICATIONS FOR THE LARGE SCALE STRUCTURE

  • KRISHNA GOPAL;WIITA PAUL J.;BARAI PARAMITA
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.517-525
    • /
    • 2004
  • We present an update on our proposal that during the 'quasar era' (1.5 $\le$ z $\le$ 3), powerful radio galaxies could have played a major role in the enhanced global star-formation, and in the widespread magnetization and metal pollution of the universe. A key ingredient of this proposal is our estimate that the true cosmological evolution of the radio galaxy population is likely to be even steeper than what has been inferred from flux-limited samples of radio sources with redshift data, when an allowance is made for the inverse Compton losses on the cosmic microwave background which were much greater at higher redshifts. We thus estimate that a large fraction of the clumps of proto-galactic material within the cosmic web of filaments was probably impacted by the expanding lobes of radio galaxies during the quasar era. Some recently published observational evidence and simulations which provide support for this picture are pointed out. We also show that the inverse Compton x-ray emission from the population of radio galaxies during the quasar era, which we inferred to be largely missing from the derived radio luminosity function, is still only a small fraction of the observed soft x-ray background (XRB) and hence the limit imposed on this scenario by the XRB is not violated.

Indoor Location System based on TDOA between RF and Ultrasonic Signal (RF와 초음파 사이의 TDOA에 기반한 실내 측위시스템)

  • Seo, Young-Dong;Song, Moon-Kyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.611-618
    • /
    • 2009
  • Recently, an indoor location-aware technology has been focused on as a key technology for context awareness in ubiquitous computing environments. The conventional Cricket system was designed with a non-centralized architecture, which has advantages in terms of user privacy, deployment, scalability, decentralized administration, network heterogeneity, and low cost. In this paper, an indoor location system based on TDOA between RF and ultrasound signals is designed, which improves the Cricket system. A 2.4GHz frequency is employed for transmitting RF messages, which is in an ISM band. The beaconing frequency is doubled to enhance the channel utilization rate. The ultrasonic pulse duration is optimized to increase the coverage of ultrasonic signals. The function of calculating location coordinates is embedded in a listener. The location-update rate and location accuracy are also improved.

Wind load estimation of super-tall buildings based on response data

  • Zhi, Lun-hai;Chen, Bo;Fang, Ming-xin
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.625-648
    • /
    • 2015
  • Modern super-tall buildings are more sensitive to strong winds. The evaluation of wind loads for the design of these buildings is of primary importance. A direct monitoring of wind forces acting on super-tall structures is quite difficult to be realized. Indirect measurements interpreted by inverse techniques are therefore favourable since dynamic response measurements are easier to be carried out. To this end, a Kalman filtering based inverse approach is developed in this study so as to estimate the wind loads on super-tall buildings based on limited structural responses. The optimum solution of Kalman filter gain by solving the Riccati equation is used to update the identification accuracy of external loads. The feasibility of the developed estimation method is investigated through the wind tunnel test of a typical super-tall building by using a Synchronous Multi-Pressure Scanning System. The effects of crucial factors such as the type of wind-induced response, the covariance matrix of noise, errors of structural modal parameters and levels of noise involved in the measurements on the wind load estimations are examined through detailed parametric study. The effects of the number of vibration modes on the identification quality are studied and discussed in detail. The made observations indicate that the proposed inverse approach is an effective tool for predicting the wind loads on super-tall buildings.