• Title/Summary/Keyword: Key Performance Parameter

Search Result 222, Processing Time 0.03 seconds

Incremental Passivity Based Control for DC-DC Boost Converters under Time-Varying Disturbances via a Generalized Proportional Integral Observer

  • He, Wei;Li, Shihua;Yang, Jun;Wang, Zuo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.147-159
    • /
    • 2018
  • In this paper, the voltage tracking control of a conventional DC-DC boost converter affected by unknown, time-varying circuit parameter perturbations is investigated. Based on the fundamental property of incremental passivity, a passivity based control law is designed. Then, to obtain a better disturbance rejection property, two generalized proportional integral (GPI) observers are employed to estimate the time-varying uncertainties in the output voltage and inductor current channels, and the estimated values are applied as feedforward compensation. Moreover, the global trajectory tracking performance of a system with disturbances is ensured under the composite controller. Finally, simulation and experiment studies are provided to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed controller delivers a promising disturbance rejection capability as well as a good nominal tracking performance.

Dynamics-Based Location Prediction and Neural Network Fine-Tuning for Task Offloading in Vehicular Networks

  • Yuanguang Wu;Lusheng Wang;Caihong Kai;Min Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3416-3435
    • /
    • 2023
  • Task offloading in vehicular networks is hot topic in the development of autonomous driving. In these scenarios, due to the role of vehicles and pedestrians, task characteristics are changing constantly. The classical deep learning algorithm always uses a pre-trained neural network to optimize task offloading, which leads to system performance degradation. Therefore, this paper proposes a neural network fine-tuning task offloading algorithm, combining with location prediction for pedestrians and vehicles by the Payne model of fluid dynamics and the car-following model, respectively. After the locations are predicted, characteristics of tasks can be obtained and the neural network will be fine-tuned. Finally, the proposed algorithm continuously predicts task characteristics and fine-tunes a neural network to maintain high system performance and meet low delay requirements. From the simulation results, compared with other algorithms, the proposed algorithm still guarantees a lower task offloading delay, especially when congestion occurs.

Analytic Throughput Model for Network Coded TCP in Wireless Mesh Networks

  • Zhang, Sanfeng;Lan, Xiang;Li, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3110-3125
    • /
    • 2014
  • Network coding improves TCP's performance in lossy wireless networks. However, the complex congestion window evolution of network coded TCP (TCP-NC) makes the analysis of end-to-end throughput challenging. This paper analyzes the evolutionary process of TCP-NC against lossy links. An analytic model is established by applying a two-dimensional Markov chain. With maximum window size, end-to-end erasure rate and redundancy parameter as input parameters, the analytic model can reflect window evolution and calculate end-to-end throughput of TCP-NC precisely. The key point of our model is that by the novel definition of the states of Markov chain, both the number of related states and the computation complexity are substantially reduced. Our work helps to understand the factors that affect TCP-NC's performance and lay the foundation of its optimization. Extensive simulations on NS2 show that the analytic model features fairly high accuracy.

Adaptive State-of-Charge Estimation Method for an Aeronautical Lithium-ion Battery Pack Based on a Reduced Particle-unscented Kalman Filter

  • Wang, Shun-Li;Yu, Chun-Mei;Fernandez, Carlos;Chen, Ming-Jie;Li, Gui-Lin;Liu, Xiao-Han
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1127-1139
    • /
    • 2018
  • A reduced particle-unscented Kalman filter estimation method, along with a splice-equivalent circuit model, is proposed for the state-of-charge estimation of an aeronautical lithium-ion battery pack. The linearization treatment is not required in this method and only a few sigma data points are used, which reduce the computational requirement of state-of-charge estimation. This method also improves the estimation covariance properties by introducing the equilibrium parameter state of balance for the aeronautical lithium-ion battery pack. In addition, the estimation performance is validated by the experimental results. The proposed state-of-charge estimation method exhibits a root-mean-square error value of 1.42% and a mean error value of 4.96%. This method is insensitive to the parameter variation of the splice-equivalent circuit model, and thus, it plays an important role in the popularization and application of the aeronautical lithium-ion battery pack.

An Analysis of Weapon Systems Operational Requirements Document in National Defense Acquisition Process (국방획득 프로세스의 무기체계 운용요구서 작성사례 분석)

  • Hur, Jangwan;Oh, Kyungwon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Delivering clear requirements of the military in the defense acquisition process is a key activity for successful weapon acquisition. In the field of defense, Operational Requirements Documents (ORDs) are prepared to derive and deliver the requirements of the military. In this study, we compare and analyze the form and content of the recent domestic ORD with reference to the US Department of Defense (DoD) ORD. As a result of the study, it is found that the domestic ORD form needs to be supplemented with in accordance with the purpose of the operation, while the requirement parameter, which is a core item of ORD, is insufficient. In order to address these issues, detailed contents of the ORD form suitable for the purpose of this study are presented. Also, we provide clear definitions, explanations, and examples of the operational system's key performance parameters and suggest ways to clearly communicate the requirements of the military.

Study on Structural Performance by Shape Parameter Variation of Bellows for the Hydrogen Compressor-embedded Refueling Tank (수소압축기 내장 충전탱크용 벨로우즈의 형상 파라미터 변화에 따른 구조 성능 고찰)

  • WOO CHANG PARK;MIN SEOK CHEONG;CHANG YONG SONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, design parameter exploration based on finite element analysis was performed to find the optimal shape of bellows, the key component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 900 bar. In the design parametric study, the design variables took into account the bellows shapes such as contour radius and span spacing, and the response factors were set to the maximum stress and the gap in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour span is an appropriate design method to improve the compression performance and structural safety. From the selection of optimal design, the maximum stress was reduced to 49% compared to the initial design without exceeding the material yield stress.

Tradeoff between the Output Voltage Deviation and Recovery Time of Boost Converters

  • Ge, Junjie;Yuan, Liqiang;Zhao, Zhengming;Lu, Ting;He, Fanbo;Feng, Gaohui
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.338-345
    • /
    • 2015
  • The time-optimal control for boost converters can achieve the minimum recovery time. However, their output voltage deviation is quite large. Since the minimum output voltage deviation and minimum recovery time cannot be obtained at the same time, a novel energy control is proposed to achieve a superior tradeoff between them in this paper. The peak value of the inductor current can be decreased as well. Its control parameter is easy to choose. When compared with the conventional control methods, the proposed control shows a better dynamic performance. Experimental results, which are in agreement with the theoretical analysis, are provided to verify the proposed control method.

Influence of Atmospheric Turbulence Channel on a Ghost-imaging Transmission System

  • Wang, Kaimin;Wang, Zhaorui;Zhang, Leihong;Kang, Yi;Ye, Hualong;Hu, Jiafeng;Xu, Jiaming
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • We research a system of compressed-sensing computational ghost imaging (CSCGI) based on the intensity fluctuation brought by turbulence. In this system, we used the gamma-gamma intensity-fluctuation model, which is commonly used in transmission systems, to simulate the CSCGI system. By setting proper values of the parameters such as transmission distance, refractive-index structure parameter, and sampling rates, the peak signal-to-noise ratio (PSNR) performance and bit-error rate (BER) performance are obtained to evaluate the imaging quality, which provides a theoretical model to further research the ghost-imaging algorithm.

Aerodynamic shape optimization emphasizing static stability for a super-long-span cable-stayed bridge with a central-slotted box deck

  • Ledong, Zhu;Cheng, Qian;Yikai, Shen;Qing, Zhu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.337-351
    • /
    • 2022
  • As central-slotted box decks usually have excellent flutter performance, studies on this type of deck mostly focus on the vortex-induced vibration (VIV) control. Yet with the increasing span lengths, cable-supported bridges may have critical wind speeds of wind-induced static instability lower than that of the flutter. This is especially likely for bridges with a central-slotted box deck. As a result, the overall aerodynamic performance of such a bridge will depend on its wind-induced static stability. Taking a 1400 m-main-span cable-stayed bridge as an example, this study investigates the influence of a series of deck shape parameters on both static and flutter instabilities. Some crucial shape parameters, like the height ratio of wind fairing and the angle of the inner-lower web, show opposite influences on the two kinds of instabilities. The aerodynamic shape optimization conducted for both static and flutter instabilities on the deck based on parameter-sensitivity studies raises the static critical wind speed by about 10%, and the overall critical wind speed by about 8%. Effective VIV countermeasures for this type of bridge deck have also been proposed.

Performance functions for laterally loaded single concrete piles in homogeneous clays

  • Imancli, Gokhan;Kahyaoglu, M. Rifat;Ozden, Gurkan;Kayalar, Arif S.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.529-537
    • /
    • 2009
  • A key parameter in the design of a laterally loaded pile is the determination of its performance level. Performance level of a pile is usually expressed as the maximum head deflection and bending moment. In general, uncertainties in the performance of a pile originates from many factors such as inherent variability of soil properties, inadequate soil exploration programs, errors taking place in the determination of soil parameters, limited calculation models as well as uncertainties in loads. This makes it difficult for practicing engineers to decide for the reliability of laterally loaded piles both in cohesive and cohesionless soils. In this paper, limit state functions and consequent performance functions are obtained for single concrete piles to predict the maximum bending moment, a widely accepted design criterion along with the permissible pile head displacement. Analyses were made utilizing three dimensional finite element method and soil-structure-interaction (SSI) effects were accounted for.