• Title/Summary/Keyword: Kevlar-polyurethane foam

Search Result 3, Processing Time 0.019 seconds

The Effects of Kevlar Pulp on Polyurethane Foam for Cryogenic Temperature (극저온용 폴리우레탄 폼에 미치는 케블라 펄프의 영향)

  • Oh, Jong-Ho;Bae, Jin-Ho;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.514-520
    • /
    • 2018
  • Polyurethane foam has excellent mechanical strength and insulation performance, and has been adopted as an insulation material for $-163^{\circ}C$ liquefied natural gas carrier. In this study, Kevlar Polyurethane Foams(K-PUF) were synthesized by adding Kevlar pulp with excellent mechanical strength for the purpose of improving the performance of existing polyurethane foam. Since polyurethane foam has mechanical performance depending on the proportions of Kevlar pulp added, the mechanical strength of the K-PUF with ratios of fiber0.2wt.%, 0.4wt.%, 0.6wt.%, 0.8wt.% and 1.0wt.%) was evaluated. The compression tests were performed on the 4 different temperatures($20^{\circ}C$, $-50^{\circ}C$, $-110^{\circ}C$ and $-163^{\circ}C$) in consideration of the environmental characteristics as a cryogenic insulation used in LNG carrier. Besides, the effects of the fiber addition on polyurethane foam with closed cell structure were evaluated in a phenomenological approach through SEM analysis. All the results were compared to Neat-polyurethane foam. As a results, 0.8wt.% K-PUF showed the improved mechanical strength, and the addition of Kevlar pulp in a certain ratio improves the mechanical performance by enhancing the compression resistance.

Thermal Performance and Impact Resistance Evaluations of Composite Insulation Mat Reinforced Polyurethane Foam (복합 단열 매트 보강 폴리우레탄 폼의 열적 성능 및 내충격성 평가)

  • Hwang, Byeong-Kwan;Bae, Jin-Ho;Lee, Jae-Myung
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.290-295
    • /
    • 2019
  • In the present study, composite insulation mat was reinforced over polyurethane foam (PUF) to improve the thermal performance and impact resistance of the PUF applied to the liquefied natural gas carrier insulation system. The composite insulation mat used Kevlar, aerogel, and cryogel composite mat that can be applied in a cryogenic environment. The thermal conductivity was measured at $20^{\circ}C$ to investigate the thermal performance, and the drop impact test was carried out under impact energy of 30 J at $20^{\circ}C$, $-163^{\circ}C$ to investigate the impact resistance. The measured thermal performance was compared with neat PUF through effective thermal conductivity theoretical value. The shock resistance was evaluated of contact force, contact time, and absorb energy. In experimental results, cryogel composite mat was the best performance in terms of thermal performance, and aerogel composite mat was the best performance in terms of impact resistance.

Experimental Study of Thermal Conductivity for Glass Wool by Inserted Dissimilar Materials based on Structural Composites (구조 복합재료 기반 이종재료 첨가시의 유리섬유의 열적 성능 평가에 대한 실험적 연구)

  • Bae, Jin-Ho;Oh, Jong-Ho;Byun, Jun-Seok;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.448-455
    • /
    • 2018
  • Glass wool is an eco-friendly materials that is manufactured through a continuous process by processing waste glass. This materials is low cost compared with another materials and has excellent thermal conductivity. For this reason, glass wool is installed as insulation system for LNG carriers and as insulation of building wall as well as various industries. The mechanism of insulation of glass wool is the conduction of the wool itself and convection by space between fibers. Therefore, in order to develop the enhanced thermal conductivity of glass wool is necessary to reduce its own conduction or to insert additional material after manufacturing as well as prevent convection. In this respect, many researchers have been actively studying to decrease thermal conductivity of polyurethane foam using by inserted glass wool or change the chemical component of glass wool. However, many research are aiming reduction of glass wool itself. This study focus on post-processing and inserted different materials; silica-aerogel, kevlar fiber 1mm, 6mm and glass bubble. Experimental results show that the thermal conductivity almost decreases with the addiction of glass bubble and silica aerogel.