• 제목/요약/키워드: Kes 69

검색결과 2건 처리시간 0.016초

Exploring the Diffuse X-ray Emission of Supernova Remnant Kesteven 69 with XMM-Newton

  • Seo, Kyoung-Ae;Hui, Chung Yue
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권2호
    • /
    • pp.87-90
    • /
    • 2013
  • We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and $N_H{\sim}2.85{\times}10^{22}\;cm^{-2}$ respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.

Kinematic Distances of the Galactic Supernova Remnants in the First Quadrant

  • 이용현;구본철;이재준
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.43.2-44
    • /
    • 2020
  • We have carried out high-resolution near-infrared (NIR) spectroscopic observations toward 16 Galactic supernova remnants (SNRs) showing strong H2 emission features. A dozen bright H2 emission lines are clearly detected for individual SNRs, and we have measured their central velocities, line widths, and fluxes. For all SNRs except one (G9.9-0.8), the H2 line ratios are well consistent with that of thermal excitation at T~2000 K and their line widths are broader than ~10 km s-1, indicating that the H2 emission lines are most likely from shock-excited gas and therefore that they are physically associated with the remnants. The kinematic distances to the 15 SNRs are derived from the central velocities of the H2 lines using a Galactic rotation model. We derive for the first time the kinematic distances to four SNRs: G13.5-0.2, G16.0-0.5, G32.1-0.9, G33.2-0.6. Among the rest 11 SNRs, the central velocities of the H2 emission lines for six SNRs are well consistent (±5 km s-1) with those obtained in previous radio observations, while for the other five SNRs (G18.1-0.1, G18.9-1.1, Kes 69, 3C 396, W49B), they are significantly different. We discuss the velocity discrepancies in these five SNRs. In G9.9-0.8, the H2 emission shows non-thermal line ratios and very narrow line width (~4 km s-1), and we discuss its origin.

  • PDF