• Title/Summary/Keyword: Kernel Density

Search Result 301, Processing Time 0.024 seconds

Hybrid Approach-Based Sparse Gaussian Kernel Model for Vehicle State Determination during Outage-Free and Complete-Outage GPS Periods

  • Havyarimana, Vincent;Xiao, Zhu;Wang, Dong
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.579-588
    • /
    • 2016
  • To improve the ability to determine a vehicle's movement information even in a challenging environment, a hybrid approach called non-Gaussian square rootunscented particle filtering (nGSR-UPF) is presented. This approach combines a square root-unscented Kalman filter (SR-UKF) and a particle filter (PF) to determinate the vehicle state where measurement noises are taken as a finite Gaussian kernel mixture and are approximated using a sparse Gaussian kernel density estimation method. During an outage-free GPS period, the updated mean and covariance, computed using SR-UKF, are estimated based on a GPS observation update. During a complete GPS outage, nGSR-UPF operates in prediction mode. Indeed, because the inertial sensors used suffer from a large drift in this case, SR-UKF-based importance density is then responsible for shifting the weighted particles toward the high-likelihood regions to improve the accuracy of the vehicle state. The proposed method is compared with some existing estimation methods and the experiment results prove that nGSR-UPF is the most accurate during both outage-free and complete-outage GPS periods.

Video Object Segmentation using Kernel Density Estimation and Spatio-temporal Coherence (커널 밀도 추정과 시공간 일치성을 이용한 동영상 객체 분할)

  • Ahn, Jae-Kyun;Kim, Chang-Su
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • A video segmentation algorithm, which can extract objects even with non-stationary backgrounds, is proposed in this work. The proposed algorithm is composed of three steps. First, we perform an initial segmentation interactively to build the probability density functions of colors per each macro block via kernel density estimation. Then, for each subsequent frame, we construct a coherence strip, which is likely to contain the object contour, by exploiting spatio-temporal correlations. Finally, we perform the segmentation by minimizing an energy function composed of color, coherence, and smoothness terms. Experimental results on various test sequences show that the proposed algorithm provides accurate segmentation results.

  • PDF

Differences in Network-Based Kernel Density Estimation According to Pedestrian Network and Road Centerline Network

  • Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.335-341
    • /
    • 2018
  • The KDE (Kernel Density Estimation) technique in GIS (Geographic Information System) has been widely used as a method for determining whether a phenomenon occurring in space forms clusters. Most human-generated events such as traffic accidents and retail stores are distributed according to a road network. Even if events on forward and rear roads have short Euclidean distances, network distances may increase and the correlation between them may be low. Therefore, the NKDE (Network-based KDE) technique has been proposed and applied to the urban space where a road network has been developed. KDE is being studied in the field of business GIS, but there is a limit to the microscopic analysis of economic activity along a road. In this study, the NKDE technique is applied to the analysis of urban phenomena such as the density of shops rather than traffic accidents that occur on roads. The results of the NKDE technique are also compared to pedestrian networks and road centerline networks. The results show that applying NKDE to microscopic trade area analysis can yield relatively accurate results. In addition, it was found that pedestrian network data that can consider the movement of actual pedestrians are necessary for accurate trade area analysis using NKDE.

Optimal bandwidth in nonparametric classification between two univariate densities

  • Hall, Peter;Kang, Kee-Hoon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.1-5
    • /
    • 2002
  • We consider the problem of optimal bandwidth choice for nonparametric classification, based on kernel density estimators, where the problem of interest is distinguishing between two univariate distributions. When the densities intersect at a single point, optimal bandwidth choice depends on curvatures of the densities at that point. The problem of empirical bandwidth selection and classifying data in the tails of a distribution are also addressed.

  • PDF

The Bending Constant in Huber’s Function in Terms of a Bandwidth in Density Estimator (HUBER의 M-추정함수의 조율상수와 커널추정함수의 평활계수의 관계)

  • 박노진
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.2
    • /
    • pp.357-367
    • /
    • 2001
  • Huber의 M-추정함수의 형태는 조율상수가 주어질 때 비로소 그 형태가 결정된다. 조율상수를 커널밀도함수추정량의 평활계수를 이용하여 구하여 보았고, 모의실험을 통해 기존에 상요되는 조율상수들과 그 성능을 비교하여 보았다. 그 결과 새로운 방법에 의해 구해진 조율상수가 기존의 조율상수를 사용하는 경우 보다 모의실험을 통해 얻은 추정치의 분산이 작게되는 경우가 있음을 알았다.

  • PDF

A Note on Complete Convergence in $C_{0}(R)\;and\;L^{1}(R)$ with Application to Kernel Density Function Estimators ($C_0(R)$$L^1(R)$의 완전수렴(完全收斂)과 커널밀도함수(密度函數) 추정량(推定量)의 응용(應用)에 대(對)한 연구(硏究))

  • Lee, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.3 no.1
    • /
    • pp.25-31
    • /
    • 1992
  • Some results relating to $C_{0}(R)\;and\;L^{1}(R)$ spaces with application to kernel density estimators will be introduced. First, random elements in $C_{0}(R)\;and\;L^{1}(R)$ are discussed. Then, complete convergence limit theorems are given to show that these results can be used in establishing uniformly consistency and $L^{1}$ consistency.

  • PDF

Application of Bootstrap Method for Change Point Test based on Kernel Density Estimator

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.107-117
    • /
    • 2004
  • Change point testing problem is considered. Kernel density estimators are used for constructing proposed change point test statistics. The proposed method can be used to the hypothesis testing of not only parameter change but also distributional change. Bootstrap method is applied to get the sampling distribution of proposed test statistic. Small sample Monte Carlo Simulation were also conducted in order to show the performance of proposed method.

  • PDF

On the Selection of Bezier Points in Bezier Curve Smoothing

  • Kim, Choongrak;Park, Jin-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.1049-1058
    • /
    • 2012
  • Nonparametric methods are often used as an alternative to parametric methods to estimate density function and regression function. In this paper we consider improved methods to select the Bezier points in Bezier curve smoothing that is shown to have the same asymptotic properties as the kernel methods. We show that the proposed methods are better than the existing methods through numerical studies.

Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA

  • Lee, Hansung;Yoo, Jang-Hee;Park, Daihee
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.333-342
    • /
    • 2014
  • Most hyper-ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex-shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K-means algorithm, fuzzy C-means algorithm, GMM-EM algorithm, and HEC algorithm based on minimum-volume ellipsoids using Mahalanobis distance.

An Algorithm of Score Function Generation using Convolution-FFT in Independent Component Analysis (독립성분분석에서 Convolution-FFT을 이용한 효율적인 점수함수의 생성 알고리즘)

  • Kim Woong-Myung;Lee Hyon-Soo
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.27-34
    • /
    • 2006
  • In this study, we propose this new algorithm that generates score function in ICA(Independent Component Analysis) using entropy theory. To generate score function, estimation of probability density function about original signals are certainly necessary and density function should be differentiated. Therefore, we used kernel density estimation method in order to derive differential equation of score function by original signal. After changing formula to convolution form to increase speed of density estimation, we used FFT algorithm that can calculate convolution faster. Proposed score function generation method reduces the errors, it is density difference of recovered signals and originals signals. In the result of computer simulation, we estimate density function more similar to original signals compared with Extended Infomax and Fixed Point ICA in blind source separation problem and get improved performance at the SNR(Signal to Noise Ratio) between recovered signals and original signal.